{-# LANGUAGE CPP #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE DeriveDataTypeable #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Codensity -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : non-portable (rank-2 polymorphism) -- ---------------------------------------------------------------------------- module Control.Monad.Codensity ( Codensity(..) , lowerCodensity , codensityToAdjunction, adjunctionToCodensity , codensityToRan, ranToCodensity , codensityToComposedRep, composedRepToCodensity , improve ) where import Control.Applicative import Control.Monad (MonadPlus(..)) import qualified Control.Monad.Fail as Fail import Control.Monad.Free import Control.Monad.IO.Class import Control.Monad.Reader.Class import Control.Monad.State.Class import Control.Monad.Trans.Class import Data.Functor.Adjunction import Data.Functor.Apply import Data.Functor.Kan.Ran import Data.Functor.Plus import Data.Functor.Rep #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif -- | -- @'Codensity' f@ is the Monad generated by taking the right Kan extension -- of any 'Functor' @f@ along itself (@Ran f f@). -- -- This can often be more \"efficient\" to construct than @f@ itself using -- repeated applications of @(>>=)@. -- -- See \"Asymptotic Improvement of Computations over Free Monads\" by Janis -- Voigtländer for more information about this type. -- -- <https://www.janis-voigtlaender.eu/papers/AsymptoticImprovementOfComputationsOverFreeMonads.pdf> newtype Codensity m a = Codensity { runCodensity :: forall b. (a -> m b) -> m b } #if __GLASGOW_HASKELL__ >= 708 deriving Typeable #endif instance Functor (Codensity k) where fmap f (Codensity m) = Codensity (\k -> m (k . f)) {-# INLINE fmap #-} instance Apply (Codensity f) where (<.>) = (<*>) {-# INLINE (<.>) #-} instance Applicative (Codensity f) where pure x = Codensity (\k -> k x) {-# INLINE pure #-} Codensity f <*> Codensity g = Codensity (\bfr -> f (\ab -> g (bfr . ab))) {-# INLINE (<*>) #-} instance Monad (Codensity f) where return = pure {-# INLINE return #-} m >>= k = Codensity (\c -> runCodensity m (\a -> runCodensity (k a) c)) {-# INLINE (>>=) #-} instance (Fail.MonadFail f) => Fail.MonadFail (Codensity f) where fail msg = Codensity $ \ _ -> Fail.fail msg {-# INLINE fail #-} instance MonadIO m => MonadIO (Codensity m) where liftIO = lift . liftIO {-# INLINE liftIO #-} instance MonadTrans Codensity where lift m = Codensity (m >>=) {-# INLINE lift #-} instance Alt v => Alt (Codensity v) where Codensity m <!> Codensity n = Codensity (\k -> m k <!> n k) {-# INLINE (<!>) #-} instance Plus v => Plus (Codensity v) where zero = Codensity (const zero) {-# INLINE zero #-} {- instance Plus v => Alternative (Codensity v) where empty = zero (<|>) = (<!>) instance Plus v => MonadPlus (Codensity v) where mzero = zero mplus = (<!>) -} instance Alternative v => Alternative (Codensity v) where empty = Codensity (\_ -> empty) {-# INLINE empty #-} Codensity m <|> Codensity n = Codensity (\k -> m k <|> n k) {-# INLINE (<|>) #-} #if __GLASGOW_HASKELL__ >= 710 instance Alternative v => MonadPlus (Codensity v) #else instance MonadPlus v => MonadPlus (Codensity v) where mzero = Codensity (\_ -> mzero) {-# INLINE mzero #-} Codensity m `mplus` Codensity n = Codensity (\k -> m k `mplus` n k) {-# INLINE mplus #-} #endif -- | -- This serves as the *left*-inverse (retraction) of 'lift'. -- -- -- @ -- 'lowerCodensity' . 'lift' ≡ 'id' -- @ -- -- In general this is not a full 2-sided inverse, merely a retraction, as -- @'Codensity' m@ is often considerably "larger" than @m@. -- -- e.g. @'Codensity' ((->) s)) a ~ forall r. (a -> s -> r) -> s -> r@ -- could support a full complement of @'MonadState' s@ actions, while @(->) s@ -- is limited to @'MonadReader' s@ actions. #if __GLASGOW_HASKELL__ >= 710 lowerCodensity :: Applicative f => Codensity f a -> f a lowerCodensity a = runCodensity a pure #else lowerCodensity :: Monad m => Codensity m a -> m a lowerCodensity a = runCodensity a return #endif {-# INLINE lowerCodensity #-} -- | The 'Codensity' monad of a right adjoint is isomorphic to the -- monad obtained from the 'Adjunction'. -- -- @ -- 'codensityToAdjunction' . 'adjunctionToCodensity' ≡ 'id' -- 'adjunctionToCodensity' . 'codensityToAdjunction' ≡ 'id' -- @ codensityToAdjunction :: Adjunction f g => Codensity g a -> g (f a) codensityToAdjunction r = runCodensity r unit {-# INLINE codensityToAdjunction #-} adjunctionToCodensity :: Adjunction f g => g (f a) -> Codensity g a adjunctionToCodensity f = Codensity (\a -> fmap (rightAdjunct a) f) {-# INLINE adjunctionToCodensity #-} -- | The 'Codensity' monad of a representable 'Functor' is isomorphic to the -- monad obtained from the 'Adjunction' for which that 'Functor' is the right -- adjoint. -- -- @ -- 'codensityToComposedRep' . 'composedRepToCodensity' ≡ 'id' -- 'composedRepToCodensity' . 'codensityToComposedRep' ≡ 'id' -- @ -- -- @ -- codensityToComposedRep = 'ranToComposedRep' . 'codensityToRan' -- @ codensityToComposedRep :: Representable u => Codensity u a -> u (Rep u, a) codensityToComposedRep (Codensity f) = f (\a -> tabulate $ \e -> (e, a)) {-# INLINE codensityToComposedRep #-} -- | -- -- @ -- 'composedRepToCodensity' = 'ranToCodensity' . 'composedRepToRan' -- @ composedRepToCodensity :: Representable u => u (Rep u, a) -> Codensity u a composedRepToCodensity hfa = Codensity $ \k -> fmap (\(e, a) -> index (k a) e) hfa {-# INLINE composedRepToCodensity #-} -- | The 'Codensity' 'Monad' of a 'Functor' @g@ is the right Kan extension ('Ran') -- of @g@ along itself. -- -- @ -- 'codensityToRan' . 'ranToCodensity' ≡ 'id' -- 'ranToCodensity' . 'codensityToRan' ≡ 'id' -- @ codensityToRan :: Codensity g a -> Ran g g a codensityToRan (Codensity m) = Ran m {-# INLINE codensityToRan #-} ranToCodensity :: Ran g g a -> Codensity g a ranToCodensity (Ran m) = Codensity m {-# INLINE ranToCodensity #-} instance (Functor f, MonadFree f m) => MonadFree f (Codensity m) where wrap t = Codensity (\h -> wrap (fmap (\p -> runCodensity p h) t)) {-# INLINE wrap #-} instance MonadReader r m => MonadState r (Codensity m) where get = Codensity (ask >>=) {-# INLINE get #-} put s = Codensity (\k -> local (const s) (k ())) {-# INLINE put #-} instance MonadReader r m => MonadReader r (Codensity m) where ask = Codensity (ask >>=) {-# INLINE ask #-} local f m = Codensity $ \c -> ask >>= \r -> local f . runCodensity m $ local (const r) . c {-# INLINE local #-} -- | Right associate all binds in a computation that generates a free monad -- -- This can improve the asymptotic efficiency of the result, while preserving -- semantics. -- -- See \"Asymptotic Improvement of Computations over Free Monads\" by Janis -- Voightländer for more information about this combinator. -- -- <http://www.iai.uni-bonn.de/~jv/mpc08.pdf> improve :: Functor f => (forall m. MonadFree f m => m a) -> Free f a improve m = lowerCodensity m {-# INLINE improve #-}