module Numeric.LAPACK.Matrix.BandedHermitian.Basic (
BandedHermitian,
Transposition(..),
fromList,
identity,
diagonal,
takeDiagonal,
toHermitian,
toBanded,
multiplyVector,
multiplyFull,
covariance,
sumRank1,
) where
import qualified Numeric.LAPACK.ShapeStatic as ShapeStatic
import qualified Numeric.LAPACK.Matrix.Shape.Private as MatrixShape
import qualified Numeric.LAPACK.Matrix.Extent as Extent
import qualified Numeric.LAPACK.Matrix.Banded.Basic as Banded
import qualified Numeric.LAPACK.Matrix.Triangular.Private as TriangularPriv
import qualified Numeric.LAPACK.Matrix.Private as Matrix
import qualified Numeric.LAPACK.Vector as Vector
import Numeric.LAPACK.Matrix.Hermitian.Private (TakeDiagonal(..))
import Numeric.LAPACK.Matrix.Hermitian.Basic (Hermitian)
import Numeric.LAPACK.Matrix.Shape.Private
(Order(RowMajor,ColumnMajor), flipOrder, uploFromOrder,
UnaryProxy, natFromProxy)
import Numeric.LAPACK.Matrix.Private
(Transposition(NonTransposed, Transposed), transposeOrder)
import Numeric.LAPACK.Vector (Vector)
import Numeric.LAPACK.Scalar (RealOf, zero, one)
import Numeric.LAPACK.Private
(fill, lacgv, copyConjugate, condConjugateToTemp,
pointerSeq, pokeCInt, copySubMatrix)
import qualified Numeric.BLAS.FFI.Generic as BlasGen
import qualified Numeric.BLAS.FFI.Complex as BlasComplex
import qualified Numeric.BLAS.FFI.Real as BlasReal
import qualified Numeric.Netlib.Utility as Call
import qualified Numeric.Netlib.Class as Class
import qualified Type.Data.Num.Unary.Literal as TypeNum
import qualified Type.Data.Num.Unary.Proof as Proof
import qualified Type.Data.Num.Unary as Unary
import Type.Data.Num.Unary ((:+:))
import Type.Data.Num (integralFromProxy)
import Type.Base.Proxy (Proxy(Proxy))
import qualified Data.Array.Comfort.Storable.Unchecked as Array
import qualified Data.Array.Comfort.Shape as Shape
import Data.Array.Comfort.Storable.Unchecked (Array(Array))
import Foreign.Marshal.Array (advancePtr)
import Foreign.C.Types (CInt, CChar)
import Foreign.ForeignPtr (ForeignPtr, withForeignPtr)
import Foreign.Ptr (Ptr, castPtr)
import Foreign.Storable (Storable, poke, peek, peekElemOff)
import Control.Monad.Trans.Cont (ContT(ContT), evalContT)
import Control.Monad.IO.Class (liftIO)
import Control.Monad (when)
import Data.Foldable (for_)
import Data.Tuple.HT (mapPair)
import Data.Complex (Complex, conjugate)
type BandedHermitian offDiag size =
Array (MatrixShape.BandedHermitian offDiag size)
type Diagonal size = BandedHermitian TypeNum.U0 size
fromList ::
(Unary.Natural offDiag, Shape.C size, Storable a) =>
UnaryProxy offDiag -> Order -> size -> [a] ->
BandedHermitian offDiag size a
fromList numOff order size =
Array.fromList (MatrixShape.BandedHermitian numOff order size)
identity ::
(Shape.C sh, Class.Floating a) => sh -> Diagonal sh a
identity sh =
Array.mapShape (MatrixShape.BandedHermitian Proxy ColumnMajor) $
Vector.constant sh one
diagonal ::
(Shape.C sh, Class.Floating a) => Vector sh (RealOf a) -> Diagonal sh a
diagonal =
Array.mapShape (MatrixShape.BandedHermitian Proxy ColumnMajor) .
Vector.fromReal
takeDiagonal ::
(Unary.Natural offDiag, Shape.C size, Class.Floating a) =>
BandedHermitian offDiag size a -> Vector size (RealOf a)
takeDiagonal =
runTakeDiagonal $
Class.switchFloating
(TakeDiagonal $ takeDiagonalAux 1) (TakeDiagonal $ takeDiagonalAux 1)
(TakeDiagonal $ takeDiagonalAux 2) (TakeDiagonal $ takeDiagonalAux 2)
takeDiagonalAux ::
(Unary.Natural offDiag, Shape.C size,
Class.Floating a, RealOf a ~ ar, Class.Real ar) =>
Int -> BandedHermitian offDiag size a -> Vector size ar
takeDiagonalAux dim (Array (MatrixShape.BandedHermitian numOff order size) a) =
let k = integralFromProxy numOff
in Array.unsafeCreateWithSize size $ \n yPtr -> evalContT $ do
nPtr <- Call.cint n
aPtr <- ContT $ withForeignPtr a
let xPtr =
castPtr $ advancePtr aPtr $
case order of
RowMajor -> 0
ColumnMajor -> k
incxPtr <- Call.cint (dim * (k+1))
incyPtr <- Call.cint 1
liftIO $ BlasGen.copy nPtr xPtr incxPtr yPtr incyPtr
toHermitian ::
(Unary.Natural offDiag, Shape.C size, Class.Floating a) =>
BandedHermitian offDiag size a -> Hermitian size a
toHermitian (Array (MatrixShape.BandedHermitian numOff order size) a) =
Array.unsafeCreateWithSize (MatrixShape.Hermitian order size) $
TriangularPriv.fromBanded
(integralFromProxy numOff) order (Shape.size size) a
toBanded ::
(Unary.Natural offDiag, Shape.C size, Class.Floating a) =>
BandedHermitian offDiag size a ->
Banded.Square offDiag offDiag size a
toBanded (Array (MatrixShape.BandedHermitian numOff order sh) a) =
Array.unsafeCreate
(MatrixShape.Banded (numOff,numOff) order (Extent.square sh)) $ \bPtr ->
withForeignPtr a $ \aPtr ->
case order of
ColumnMajor -> toBandedColumnMajor numOff sh aPtr bPtr
RowMajor -> toBandedRowMajor numOff sh aPtr bPtr
toBandedColumnMajor ::
(Unary.Natural offDiag, Shape.C size, Class.Floating a) =>
UnaryProxy offDiag -> size -> Ptr a -> Ptr a -> IO ()
toBandedColumnMajor numOff size aPtr bPtr = do
let n = Shape.size size
let k = integralFromProxy numOff
let lda0 = k
let lda = lda0+1
let ldb0 = 2*k
let ldb = ldb0+1
copySubMatrix lda n lda aPtr ldb bPtr
evalContT $ do
incxPtr <- Call.cint lda0
incyPtr <- Call.cint 1
inczPtr <- Call.cint 0
zPtr <- Call.number zero
nPtr <- Call.alloca
liftIO $ for_ (take n [0..]) $ \i -> do
let top = i+1
let bottom = min n (i+k+1)
let xPtr = advancePtr aPtr ((i+1)*lda0+top+k1)
let yPtr = advancePtr bPtr (i*ldb0+k)
pokeCInt nPtr (bottomtop)
copyConjugate nPtr xPtr incxPtr (advancePtr yPtr top) incyPtr
pokeCInt nPtr (i+k+1 bottom)
BlasGen.copy nPtr zPtr inczPtr (advancePtr yPtr bottom) incyPtr
toBandedRowMajor ::
(Unary.Natural offDiag, Shape.C size, Class.Floating a) =>
UnaryProxy offDiag -> size -> Ptr a -> Ptr a -> IO ()
toBandedRowMajor numOff size aPtr bPtr = do
let n = Shape.size size
let k = integralFromProxy numOff
let lda0 = k
let lda = lda0+1
let ldb0 = 2*k
let ldb = ldb0+1
copySubMatrix lda n lda aPtr ldb (advancePtr bPtr k)
evalContT $ do
incxPtr <- Call.cint lda0
incyPtr <- Call.cint 1
inczPtr <- Call.cint 0
zPtr <- Call.number zero
nPtr <- Call.alloca
liftIO $ for_ (take n [0..]) $ \i -> do
let left = max 0 (ik)
let xPtr = advancePtr aPtr (left*lda0+i)
let yPtr = advancePtr bPtr (i*ldb0)
pokeCInt nPtr (ki+left)
BlasGen.copy nPtr zPtr inczPtr (advancePtr yPtr i) incyPtr
pokeCInt nPtr (ileft)
copyConjugate nPtr xPtr incxPtr (advancePtr yPtr (left+k)) incyPtr
multiplyVector ::
(Unary.Natural offDiag, Shape.C size, Eq size, Class.Floating a) =>
Transposition -> BandedHermitian offDiag size a ->
Vector size a -> Vector size a
multiplyVector transposed
(Array (MatrixShape.BandedHermitian numOff order size) a) (Array sizeX x) =
Array.unsafeCreateWithSize size $ \n yPtr -> do
Call.assert "BandedHermitian.multiplyVector: shapes mismatch"
(size == sizeX)
let k = integralFromProxy numOff
evalContT $ do
let conj = transposeOrder transposed order == RowMajor
uploPtr <- Call.char $ uploFromOrder order
nPtr <- Call.cint n
kPtr <- Call.cint k
alphaPtr <- Call.number one
aPtr <- ContT $ withForeignPtr a
ldaPtr <- Call.leadingDim $ k+1
xPtr <- condConjugateToTemp conj n x
incxPtr <- Call.cint 1
betaPtr <- Call.number zero
incyPtr <- Call.cint 1
liftIO $ do
BlasGen.hbmv uploPtr nPtr kPtr
alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr
when conj $ lacgv nPtr yPtr incyPtr
covariance ::
(Shape.C size, Eq size, Class.Floating a,
Unary.Natural sub, Unary.Natural super) =>
Banded.Square sub super size a ->
BandedHermitian (sub :+: super) size a
covariance a =
case mapPair (natFromProxy,natFromProxy) $
MatrixShape.bandedOffDiagonals $ Array.shape a of
(sub,super) ->
case (Proof.addNat sub super, Proof.addComm sub super) of
(Proof.Nat, Proof.AddComm) ->
fromUpperPart $ Banded.multiply (Banded.adjoint a) a
fromUpperPart ::
(Unary.Natural offDiag, Shape.C size, Class.Floating a) =>
Banded.Square offDiag offDiag size a -> BandedHermitian offDiag size a
fromUpperPart (Array (MatrixShape.Banded (sub,super) order extent) a) =
let sh = Extent.squareSize extent
n = Shape.size sh
kl = integralFromProxy sub
ku = integralFromProxy super
lda = kl+1+ku
ldb = ku+1
in Array.unsafeCreate (MatrixShape.BandedHermitian super order sh) $ \bPtr ->
withForeignPtr a $ \aPtr ->
case order of
ColumnMajor -> copySubMatrix ldb n lda aPtr ldb bPtr
RowMajor -> copySubMatrix ldb n lda (advancePtr aPtr kl) ldb bPtr
multiplyFull ::
(Unary.Natural offDiag, Extent.C vert, Extent.C horiz,
Shape.C height, Eq height, Shape.C width, Eq width, Class.Floating a) =>
Transposition -> BandedHermitian offDiag height a ->
Matrix.Full vert horiz height width a ->
Matrix.Full vert horiz height width a
multiplyFull transposed a b =
case MatrixShape.fullOrder $ Array.shape b of
ColumnMajor -> multiplyFullSpecial transposed a b
RowMajor -> multiplyFullGeneric transposed a b
multiplyFullSpecial ::
(Unary.Natural offDiag, Extent.C vert, Extent.C horiz,
Eq height, Shape.C height, Shape.C width, Class.Floating a) =>
Transposition -> BandedHermitian offDiag height a ->
Matrix.Full vert horiz height width a ->
Matrix.Full vert horiz height width a
multiplyFullSpecial transposed
(Array (MatrixShape.BandedHermitian numOff orderA sizeA) a)
(Array (MatrixShape.Full orderB extentB) b) =
Array.unsafeCreate (MatrixShape.Full orderB extentB) $ \cPtr -> do
Call.assert "BandedHermitian.multiplyFull: shapes mismatch"
(sizeA == Extent.height extentB)
let (height,width) = Extent.dimensions extentB
case orderB of
ColumnMajor ->
multiplyFullColumnMajor
transposed numOff (height,width) orderA a b cPtr
RowMajor ->
multiplyFullRowMajor
transposed numOff (height,width) orderA a b cPtr
multiplyFullColumnMajor ::
(Unary.Natural offDiag, Shape.C height, Shape.C width, Class.Floating a) =>
Transposition -> UnaryProxy offDiag -> (height, width) ->
Order -> ForeignPtr a -> ForeignPtr a -> Ptr a -> IO ()
multiplyFullColumnMajor transposed numOff (height,width) order a b cPtr = do
let n = Shape.size height
let nrhs = Shape.size width
let k = integralFromProxy numOff
evalContT $ do
uploPtr <- Call.char $ uploFromOrder order
nPtr <- Call.cint n
kPtr <- Call.cint k
alphaPtr <- Call.number one
aPtr <- ContT $ withForeignPtr a
ldaPtr <- Call.leadingDim $ k+1
bPtr <- ContT $ withForeignPtr b
incxPtr <- Call.cint 1
betaPtr <- Call.number zero
incyPtr <- Call.cint 1
let pointers = take nrhs $ zip (pointerSeq n bPtr) (pointerSeq n cPtr)
case transposeOrder transposed order of
RowMajor -> do
xPtr <- Call.allocaArray n
liftIO $ for_ pointers $ \(biPtr,yPtr) -> do
copyConjugate nPtr biPtr incxPtr xPtr incxPtr
BlasGen.hbmv uploPtr nPtr kPtr
alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr
lacgv nPtr yPtr incyPtr
ColumnMajor ->
liftIO $ for_ pointers $ \(xPtr,yPtr) ->
BlasGen.hbmv uploPtr nPtr kPtr
alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr
multiplyFullRowMajor ::
(Unary.Natural offDiag, Shape.C height, Shape.C width, Class.Floating a) =>
Transposition -> UnaryProxy offDiag -> (height, width) ->
Order -> ForeignPtr a -> ForeignPtr a -> Ptr a -> IO ()
multiplyFullRowMajor =
error "BandedHermitian.multiplyFullRowMajor: not implemented"
multiplyFullGeneric ::
(Unary.Natural offDiag, Extent.C vert, Extent.C horiz,
Shape.C height, Eq height, Shape.C width, Eq width, Class.Floating a) =>
Transposition -> BandedHermitian offDiag height a ->
Matrix.Full vert horiz height width a ->
Matrix.Full vert horiz height width a
multiplyFullGeneric transposed a b =
let (lower,upper) = (takeStrictLower a, takeUpper a)
(lowerT,upperT) =
case transposed of
Transposed -> (Banded.transpose upper, Banded.transpose lower)
NonTransposed -> (lower,upper)
in Banded.multiplyFull (Banded.mapExtent Extent.fromSquare lowerT) b
`Vector.add`
Banded.multiplyFull (Banded.mapExtent Extent.fromSquare upperT) b
takeUpper ::
(Unary.Natural offDiag, Shape.C size, Class.Floating a) =>
BandedHermitian offDiag size a ->
Banded.Square TypeNum.U0 offDiag size a
takeUpper =
Array.mapShape
(\(MatrixShape.BandedHermitian numOff order sh) ->
MatrixShape.bandedSquare (Proxy,numOff) order sh)
takeStrictLower ::
(Unary.Natural offDiag, Shape.C size, Class.Floating a) =>
BandedHermitian offDiag size a ->
Banded.Square offDiag TypeNum.U0 size a
takeStrictLower (Array (MatrixShape.BandedHermitian numOff order sh) x) =
Array.unsafeCreateWithSize
(MatrixShape.bandedSquare (numOff,Proxy) (flipOrder order) sh) $
\size yPtr -> evalContT $ do
let k = integralFromProxy numOff
nPtr <- Call.cint $ Shape.size sh
xPtr <- ContT $ withForeignPtr x
sizePtr <- Call.cint size
incxPtr <- Call.cint 1
incyPtr <- Call.cint 1
inczPtr <- Call.cint 0
ldbPtr <- Call.leadingDim $ k+1
zPtr <- Call.number zero
liftIO $ do
copyConjugate sizePtr xPtr incxPtr yPtr incyPtr
let offset = case order of ColumnMajor -> k; RowMajor -> 0
BlasGen.copy nPtr zPtr inczPtr (advancePtr yPtr offset) ldbPtr
type StaticVector n = Vector (ShapeStatic.ZeroBased n)
sumRank1 ::
(Unary.Natural k, Shape.Indexed sh, Class.Floating a) =>
Order -> sh ->
[(RealOf a, (Shape.Index sh, StaticVector (Unary.Succ k) a))] ->
BandedHermitian k sh a
sumRank1 =
getSumRank1 $
Class.switchFloating
(SumRank1 $ sumRank1Aux Proxy)
(SumRank1 $ sumRank1Aux Proxy)
(SumRank1 $ sumRank1Aux Proxy)
(SumRank1 $ sumRank1Aux Proxy)
newtype SumRank1 k sh a = SumRank1 {getSumRank1 :: SumRank1_ k sh (RealOf a) a}
type SumRank1_ k sh ar a =
Order -> sh ->
[(ar, (Shape.Index sh, StaticVector (Unary.Succ k) a))] ->
BandedHermitian k sh a
sumRank1Aux ::
(Unary.Natural k, Shape.Indexed sh,
Class.Floating a, RealOf a ~ ar, Class.Real ar) =>
UnaryProxy k -> SumRank1_ k sh ar a
sumRank1Aux numOff order size xs =
Array.unsafeCreateWithSize
(MatrixShape.BandedHermitian numOff order size) $
\bSize aPtr -> evalContT $ do
let k = integralFromProxy numOff
let n = Shape.size size
let lda = k+1
uploPtr <- Call.char $ uploFromOrder order
mPtr <- Call.cint lda
alphaPtr <- Call.alloca
incxPtr <- Call.cint 1
kPtr <- Call.cint k
ldbPtr <- Call.leadingDim k
bSizePtr <- Call.cint bSize
liftIO $ do
fill zero bSize aPtr
for_ xs $ \(alpha, (offset, Array _shX x)) ->
withForeignPtr x $ \xPtr -> do
let i = Shape.offset size offset
Call.assert "BandedHermitian.sumRank1: index too large" (i+k < n)
let bPtr = advancePtr aPtr (lda*i)
hbr order k alpha
uploPtr mPtr kPtr alphaPtr xPtr incxPtr bPtr incxPtr ldbPtr
case order of
RowMajor -> lacgv bSizePtr aPtr incxPtr
ColumnMajor -> return ()
type HBR_ ar a =
Order -> Int -> ar -> Ptr CChar -> Ptr CInt -> Ptr CInt ->
Ptr a -> Ptr a -> Ptr CInt -> Ptr a -> Ptr CInt -> Ptr CInt -> IO ()
newtype HBR a = HBR {getHBR :: HBR_ (RealOf a) a}
hbr :: Class.Floating a => HBR_ (RealOf a) a
hbr = getHBR $ Class.switchFloating (HBR syr) (HBR syr) (HBR her) (HBR her)
syr :: (Class.Real a) => HBR_ a a
syr order k alpha uploPtr nPtr kPtr alphaPtr xPtr incxPtr a0Ptr incaPtr ldaPtr =
case order of
ColumnMajor -> do
let aPtr = advancePtr a0Ptr k
poke alphaPtr alpha
BlasReal.syr uploPtr kPtr alphaPtr xPtr incxPtr aPtr ldaPtr
poke alphaPtr . (alpha*) =<< peekElemOff xPtr k
BlasGen.axpy nPtr alphaPtr xPtr incxPtr (advancePtr aPtr (k*k)) incaPtr
RowMajor -> do
let aPtr = a0Ptr
poke alphaPtr . (alpha*) =<< peek xPtr
BlasGen.axpy nPtr alphaPtr xPtr incxPtr aPtr incaPtr
poke alphaPtr alpha
BlasReal.syr uploPtr kPtr alphaPtr
(advancePtr xPtr 1) incxPtr (advancePtr aPtr (k+1)) ldaPtr
her :: (Class.Real a) => HBR_ a (Complex a)
her order k alpha uploPtr nPtr kPtr alphaPtr xPtr incxPtr a0Ptr incaPtr ldaPtr =
case order of
ColumnMajor -> do
let aPtr = advancePtr a0Ptr k
let alphaRealPtr = castPtr alphaPtr
poke alphaRealPtr alpha
BlasComplex.her uploPtr kPtr alphaRealPtr xPtr incxPtr aPtr ldaPtr
poke alphaPtr . fmap (alpha*) . conjugate =<< peekElemOff xPtr k
BlasGen.axpy nPtr alphaPtr xPtr incxPtr (advancePtr aPtr (k*k)) incaPtr
RowMajor -> do
let aPtr = a0Ptr
let alphaRealPtr = castPtr alphaPtr
poke alphaPtr . fmap (alpha*) . conjugate =<< peek xPtr
BlasGen.axpy nPtr alphaPtr xPtr incxPtr aPtr incaPtr
poke alphaRealPtr alpha
BlasComplex.her uploPtr kPtr alphaRealPtr
(advancePtr xPtr 1) incxPtr (advancePtr aPtr (k+1)) ldaPtr