module Numeric.LAPACK.Vector (
Vector,
RealOf,
ComplexOf,
toList,
fromList,
autoFromList,
append, take, drop,
takeLeft, takeRight,
constant,
unit,
dot, inner,
sum,
absSum,
norm1,
norm2,
normInf,
normInf1,
argAbsMaximum,
argAbs1Maximum,
product,
scale, scaleReal,
add, sub,
mac,
mul,
conjugate,
fromReal,
toComplex,
realPart,
complexFromReal,
complexToRealPart,
complexToImaginaryPart,
zipComplex,
unzipComplex,
random, RandomDistribution(..),
) where
import qualified Numeric.LAPACK.Scalar as Scalar
import qualified Numeric.LAPACK.Private as Private
import Numeric.LAPACK.Matrix.Private (ZeroInt)
import Numeric.LAPACK.Scalar (ComplexOf, RealOf, zero, one, minusOne, absolute)
import Numeric.LAPACK.Private (fill, copyConjugate)
import qualified Numeric.LAPACK.FFI.Generic as LapackGen
import qualified Numeric.LAPACK.FFI.Complex as LapackComplex
import qualified Numeric.BLAS.FFI.Generic as BlasGen
import qualified Numeric.BLAS.FFI.Complex as BlasComplex
import qualified Numeric.BLAS.FFI.Real as BlasReal
import qualified Numeric.Netlib.Utility as Call
import qualified Numeric.Netlib.Class as Class
import Foreign.Marshal.Array (copyArray, advancePtr)
import Foreign.ForeignPtr (withForeignPtr)
import Foreign.Ptr (Ptr, castPtr)
import Foreign.Storable (Storable, peek, peekElemOff, pokeElemOff)
import Foreign.C.Types (CInt)
import System.IO.Unsafe (unsafePerformIO)
import Control.Monad.Trans.Cont (ContT(ContT), evalContT)
import Control.Monad.IO.Class (liftIO)
import Control.Applicative (Const(Const,getConst), liftA3, (<$>))
import qualified Data.Array.Comfort.Storable.Unchecked as Array
import qualified Data.Array.Comfort.Shape as Shape
import Data.Array.Comfort.Storable.Unchecked (Array(Array))
import Data.Array.Comfort.Shape ((:+:)((:+:)))
import Data.Complex (Complex)
import Data.Tuple.HT (mapFst, uncurry3)
import Data.Word (Word64)
import Data.Bits (shiftR, (.&.))
import Prelude hiding (sum, product, take, drop)
type Vector = Array
toList :: (Shape.C sh, Storable a) => Vector sh a -> [a]
toList = Array.toList
fromList :: (Shape.C sh, Storable a) => sh -> [a] -> Vector sh a
fromList = Array.fromList
autoFromList :: (Storable a) => [a] -> Vector (Shape.ZeroBased Int) a
autoFromList = Array.vectorFromList
constant :: (Shape.C sh, Class.Floating a) => sh -> a -> Vector sh a
constant sh a = Array.unsafeCreateWithSize sh $ fill a
unit ::
(Shape.Indexed sh, Class.Floating a) =>
sh -> Shape.Index sh -> Vector sh a
unit sh ix = Array.unsafeCreateWithSize sh $ \n xPtr -> do
fill zero n xPtr
pokeElemOff xPtr (Shape.offset sh ix) one
append ::
(Shape.C shx, Shape.C shy, Storable a) =>
Vector shx a -> Vector shy a -> Vector (shx:+:shy) a
append (Array shX x) (Array shY y) =
Array.unsafeCreate (shX:+:shY) $ \zPtr ->
evalContT $ do
xPtr <- ContT $ withForeignPtr x
yPtr <- ContT $ withForeignPtr y
let sizeX = Shape.size shX
let sizeY = Shape.size shY
liftIO $ do
copyArray zPtr xPtr sizeX
copyArray (advancePtr zPtr sizeX) yPtr sizeY
take, drop :: (Storable a) => Int -> Vector ZeroInt a -> Vector ZeroInt a
take n = takeLeft . split n
drop n = takeRight . split n
split :: (Storable a) => Int -> Vector ZeroInt a -> Vector (ZeroInt:+:ZeroInt) a
split n =
Array.mapShape
(\(Shape.ZeroBased m) ->
if n<0
then error "Vector.split: negative number of elements"
else
let k = min n m
in Shape.ZeroBased k :+: Shape.ZeroBased (mk))
takeLeft ::
(Shape.C sh0, Shape.C sh1, Storable a) =>
Vector (sh0:+:sh1) a -> Vector sh0 a
takeLeft (Array (sh0 :+: _sh1) x) =
Array.unsafeCreateWithSize sh0 $ \k yPtr ->
withForeignPtr x $ \xPtr -> copyArray yPtr xPtr k
takeRight ::
(Shape.C sh0, Shape.C sh1, Storable a) =>
Vector (sh0:+:sh1) a -> Vector sh1 a
takeRight (Array (sh0:+:sh1) x) =
Array.unsafeCreateWithSize sh1 $ \k yPtr ->
withForeignPtr x $ \xPtr ->
copyArray yPtr (advancePtr xPtr (Shape.size sh0)) k
newtype Dot sh a = Dot {runDot :: Vector sh a -> Vector sh a -> a}
dot ::
(Shape.C sh, Eq sh, Class.Floating a) =>
Vector sh a -> Vector sh a -> a
dot =
runDot $
Class.switchFloating
(Dot dotReal)
(Dot dotReal)
(Dot $ dotComplex 'T')
(Dot $ dotComplex 'T')
inner ::
(Shape.C sh, Eq sh, Class.Floating a) =>
Vector sh a -> Vector sh a -> a
inner =
runDot $
Class.switchFloating
(Dot dotReal)
(Dot dotReal)
(Dot $ dotComplex 'C')
(Dot $ dotComplex 'C')
dotReal ::
(Shape.C sh, Eq sh, Class.Real a) =>
Vector sh a -> Vector sh a -> a
dotReal arrX@(Array shX _x) (Array shY y) = unsafePerformIO $ do
Call.assert "dot: shapes mismatch" (shX == shY)
evalContT $ do
(nPtr, sxPtr, incxPtr) <- vectorArgs arrX
syPtr <- ContT $ withForeignPtr y
incyPtr <- Call.cint 1
liftIO $ BlasReal.dot nPtr sxPtr incxPtr syPtr incyPtr
dotComplex ::
(Shape.C sh, Eq sh, Class.Real a) =>
Char -> Vector sh (Complex a) -> Vector sh (Complex a) -> Complex a
dotComplex trans (Array shX x) (Array shY y) = unsafePerformIO $ do
Call.assert "dot: shapes mismatch" (shX == shY)
evalContT $ do
let m = Shape.size shX
transPtr <- Call.char trans
mPtr <- Call.cint m
nPtr <- Call.cint 1
alphaPtr <- Call.number one
xPtr <- ContT $ withForeignPtr x
ldxPtr <- Call.leadingDim m
yPtr <- ContT $ withForeignPtr y
incyPtr <- Call.cint 1
betaPtr <- Call.number zero
zPtr <- Call.alloca
inczPtr <- Call.cint 1
liftIO $
Private.gemv
transPtr mPtr nPtr alphaPtr xPtr ldxPtr
yPtr incyPtr betaPtr zPtr inczPtr
liftIO $ peek zPtr
sum :: (Shape.C sh, Class.Floating a) => Vector sh a -> a
sum (Array sh x) = unsafePerformIO $
withForeignPtr x $ \xPtr -> Private.sum (Shape.size sh) xPtr 1
norm1 :: (Shape.C sh, Class.Floating a) => Vector sh a -> RealOf a
norm1 arr = unsafePerformIO $
evalContT $ liftIO . uncurry3 csum1 =<< vectorArgs arr
csum1 :: Class.Floating a => Ptr CInt -> Ptr a -> Ptr CInt -> IO (RealOf a)
csum1 =
getNorm $
Class.switchFloating
(Norm BlasReal.asum)
(Norm BlasReal.asum)
(Norm LapackComplex.sum1)
(Norm LapackComplex.sum1)
absSum :: (Shape.C sh, Class.Floating a) => Vector sh a -> RealOf a
absSum arr = unsafePerformIO $
evalContT $ liftIO . uncurry3 asum =<< vectorArgs arr
asum :: Class.Floating a => Ptr CInt -> Ptr a -> Ptr CInt -> IO (RealOf a)
asum =
getNorm $
Class.switchFloating
(Norm BlasReal.asum) (Norm BlasReal.asum)
(Norm BlasComplex.casum) (Norm BlasComplex.casum)
norm2 :: (Shape.C sh, Class.Floating a) => Vector sh a -> RealOf a
norm2 arr = unsafePerformIO $
evalContT $ liftIO . uncurry3 nrm2 =<< vectorArgs arr
nrm2 :: Class.Floating a => Ptr CInt -> Ptr a -> Ptr CInt -> IO (RealOf a)
nrm2 =
getNorm $
Class.switchFloating
(Norm BlasReal.nrm2) (Norm BlasReal.nrm2)
(Norm BlasComplex.cnrm2) (Norm BlasComplex.cnrm2)
newtype Norm a =
Norm {getNorm :: Ptr CInt -> Ptr a -> Ptr CInt -> IO (RealOf a)}
normInf :: (Shape.C sh, Class.Floating a) => Vector sh a -> RealOf a
normInf arr = unsafePerformIO $
evalContT $ do
(nPtr, sxPtr, incxPtr) <- vectorArgs arr
liftIO $
fmap (absolute . maybe zero snd) $
peekElemOff1 sxPtr =<< absMax nPtr sxPtr incxPtr
normInf1 :: (Shape.C sh, Class.Floating a) => Vector sh a -> RealOf a
normInf1 arr = unsafePerformIO $
evalContT $ do
(nPtr, sxPtr, incxPtr) <- vectorArgs arr
liftIO $
fmap (Scalar.norm1 . maybe zero snd) $
peekElemOff1 sxPtr =<< BlasGen.iamax nPtr sxPtr incxPtr
argAbsMaximum ::
(Shape.InvIndexed sh, Class.Floating a) =>
Vector sh a -> (Shape.Index sh, a)
argAbsMaximum arr = unsafePerformIO $
evalContT $ do
(nPtr, sxPtr, incxPtr) <- vectorArgs arr
liftIO $
fmap
(maybe
(error "Vector.argAbsMaximum: empty vector")
(mapFst (Shape.uncheckedIndexFromOffset $ Array.shape arr))) $
peekElemOff1 sxPtr =<< absMax nPtr sxPtr incxPtr
newtype ArgMaximum a =
ArgMaximum {runArgMaximum :: Ptr CInt -> Ptr a -> Ptr CInt -> IO CInt}
absMax :: Class.Floating a => Ptr CInt -> Ptr a -> Ptr CInt -> IO CInt
absMax =
runArgMaximum $
Class.switchFloating
(ArgMaximum BlasGen.iamax)
(ArgMaximum BlasGen.iamax)
(ArgMaximum LapackComplex.imax1)
(ArgMaximum LapackComplex.imax1)
argAbs1Maximum ::
(Shape.InvIndexed sh, Class.Floating a) =>
Vector sh a -> (Shape.Index sh, a)
argAbs1Maximum arr = unsafePerformIO $
evalContT $ do
(nPtr, sxPtr, incxPtr) <- vectorArgs arr
liftIO $
fmap
(maybe
(error "Vector.argAbs1Maximum: empty vector")
(mapFst (Shape.uncheckedIndexFromOffset $ Array.shape arr))) $
peekElemOff1 sxPtr =<< BlasGen.iamax nPtr sxPtr incxPtr
vectorArgs ::
(Shape.C sh) => Array sh a -> ContT r IO (Ptr CInt, Ptr a, Ptr CInt)
vectorArgs (Array sh x) =
liftA3 (,,)
(Call.cint $ Shape.size sh)
(ContT $ withForeignPtr x)
(Call.cint 1)
peekElemOff1 :: (Storable a) => Ptr a -> CInt -> IO (Maybe (Int, a))
peekElemOff1 ptr k1 =
let k1i = fromIntegral k1
ki = k1i1
in if k1i == 0
then return Nothing
else Just . (,) ki <$> peekElemOff ptr ki
product :: (Shape.C sh, Class.Floating a) => Vector sh a -> a
product (Array sh x) = unsafePerformIO $
withForeignPtr x $ \xPtr -> Private.product (Shape.size sh) xPtr 1
scale, _scale ::
(Shape.C sh, Class.Floating a) =>
a -> Vector sh a -> Vector sh a
scale alpha (Array sh x) = Array.unsafeCreateWithSize sh $ \n syPtr -> do
evalContT $ do
alphaPtr <- Call.number alpha
nPtr <- Call.cint n
sxPtr <- ContT $ withForeignPtr x
incxPtr <- Call.cint 1
incyPtr <- Call.cint 1
liftIO $ BlasGen.copy nPtr sxPtr incxPtr syPtr incyPtr
liftIO $ BlasGen.scal nPtr alphaPtr syPtr incyPtr
_scale a (Array sh b) = Array.unsafeCreateWithSize sh $ \n cPtr -> do
let m = 1
let k = 1
evalContT $ do
transaPtr <- Call.char 'N'
transbPtr <- Call.char 'N'
mPtr <- Call.cint m
kPtr <- Call.cint k
nPtr <- Call.cint n
alphaPtr <- Call.number one
aPtr <- Call.number a
ldaPtr <- Call.leadingDim m
bPtr <- ContT $ withForeignPtr b
ldbPtr <- Call.leadingDim k
betaPtr <- Call.number zero
ldcPtr <- Call.leadingDim m
liftIO $
BlasGen.gemm
transaPtr transbPtr mPtr nPtr kPtr alphaPtr
aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr
scaleReal ::
(Shape.C sh, Class.Floating a) =>
RealOf a -> Vector sh a -> Vector sh a
scaleReal =
getScaleReal $
Class.switchFloating
(ScaleReal scale)
(ScaleReal scale)
(ScaleReal scaleRealComplex)
(ScaleReal scaleRealComplex)
newtype ScaleReal f a = ScaleReal {getScaleReal :: RealOf a -> f a -> f a}
scaleRealComplex ::
(Shape.C sh, Class.Real a) =>
a -> Vector sh (Complex a) -> Vector sh (Complex a)
scaleRealComplex alpha (Array sh x) =
Array.unsafeCreateWithSize sh $ \n cyPtr ->
evalContT $ do
alphaPtr <- Call.number alpha
n2Ptr <- Call.cint (2*n)
cxPtr <- ContT $ withForeignPtr x
let sxPtr = castPtr cxPtr
let syPtr = castPtr cyPtr
incxPtr <- Call.cint 1
incyPtr <- Call.cint 1
liftIO $ do
BlasReal.copy n2Ptr sxPtr incxPtr syPtr incyPtr
BlasReal.scal n2Ptr alphaPtr syPtr incyPtr
add, sub ::
(Shape.C sh, Eq sh, Class.Floating a) =>
Vector sh a -> Vector sh a -> Vector sh a
add = mac one
sub x y = mac minusOne y x
mac ::
(Shape.C sh, Eq sh, Class.Floating a) =>
a -> Vector sh a -> Vector sh a -> Vector sh a
mac alpha (Array shX x) (Array shY y) =
Array.unsafeCreateWithSize shX $ \n szPtr -> do
Call.assert "mac: shapes mismatch" (shX == shY)
evalContT $ do
nPtr <- Call.cint n
saPtr <- Call.number alpha
sxPtr <- ContT $ withForeignPtr x
incxPtr <- Call.cint 1
syPtr <- ContT $ withForeignPtr y
incyPtr <- Call.cint 1
inczPtr <- Call.cint 1
liftIO $ BlasGen.copy nPtr syPtr incyPtr szPtr inczPtr
liftIO $ BlasGen.axpy nPtr saPtr sxPtr incxPtr szPtr inczPtr
mul ::
(Shape.C sh, Eq sh, Class.Floating a) =>
Vector sh a -> Vector sh a -> Vector sh a
mul (Array shA a) (Array shX x) =
Array.unsafeCreateWithSize shX $ \n yPtr -> do
Call.assert "mul: shapes mismatch" (shA == shX)
evalContT $ do
transPtr <- Call.char 'N'
nPtr <- Call.cint n
klPtr <- Call.cint 0
kuPtr <- Call.cint 0
alphaPtr <- Call.number one
aPtr <- ContT $ withForeignPtr a
ldaPtr <- Call.leadingDim 1
xPtr <- ContT $ withForeignPtr x
incxPtr <- Call.cint 1
betaPtr <- Call.number zero
incyPtr <- Call.cint 1
liftIO $
BlasGen.gbmv transPtr
nPtr nPtr klPtr kuPtr alphaPtr aPtr ldaPtr
xPtr incxPtr betaPtr yPtr incyPtr
newtype Conjugate sh a = Conjugate {getConjugate :: Vector sh a -> Vector sh a}
conjugate ::
(Shape.C sh, Class.Floating a) =>
Vector sh a -> Vector sh a
conjugate =
getConjugate $
Class.switchFloating
(Conjugate id)
(Conjugate id)
(Conjugate complexConjugate)
(Conjugate complexConjugate)
complexConjugate ::
(Shape.C sh, Class.Real a) =>
Vector sh (Complex a) -> Vector sh (Complex a)
complexConjugate (Array sh x) = Array.unsafeCreateWithSize sh $ \n syPtr ->
evalContT $ do
nPtr <- Call.cint n
sxPtr <- ContT $ withForeignPtr x
incxPtr <- Call.cint 1
incyPtr <- Call.cint 1
liftIO $ copyConjugate nPtr sxPtr incxPtr syPtr incyPtr
fromReal ::
(Shape.C sh, Class.Floating a) => Vector sh (RealOf a) -> Vector sh a
fromReal =
getFromReal $
Class.switchFloating
(FromReal id)
(FromReal id)
(FromReal complexFromReal)
(FromReal complexFromReal)
newtype FromReal f a = FromReal {getFromReal :: f (RealOf a) -> f a}
toComplex ::
(Shape.C sh, Class.Floating a) => Vector sh a -> Vector sh (ComplexOf a)
toComplex =
getToComplex $
Class.switchFloating
(ToComplex complexFromReal)
(ToComplex complexFromReal)
(ToComplex id)
(ToComplex id)
newtype ToComplex f a = ToComplex {getToComplex :: f a -> f (ComplexOf a)}
complexFromReal ::
(Shape.C sh, Class.Real a) => Vector sh a -> Vector sh (Complex a)
complexFromReal (Array sh x) =
Array.unsafeCreateWithSize sh $ \n yPtr ->
case castPtr yPtr of
yrPtr -> evalContT $ do
nPtr <- Call.cint n
xPtr <- ContT $ withForeignPtr x
incxPtr <- Call.cint 1
incyPtr <- Call.cint 2
inczPtr <- Call.cint 0
zPtr <- Call.number zero
liftIO $ do
BlasGen.copy nPtr xPtr incxPtr yrPtr incyPtr
BlasGen.copy nPtr zPtr inczPtr (advancePtr yrPtr 1) incyPtr
realPart ::
(Shape.C sh, Class.Floating a) => Vector sh a -> Vector sh (RealOf a)
realPart =
getToReal $
Class.switchFloating
(ToReal id)
(ToReal id)
(ToReal complexToRealPart)
(ToReal complexToRealPart)
newtype ToReal f a = ToReal {getToReal :: f a -> f (RealOf a)}
zipComplex ::
(Shape.C sh, Eq sh, Class.Real a) =>
Vector sh a -> Vector sh a -> Vector sh (Complex a)
zipComplex (Array shr xr) (Array shi xi) =
Array.unsafeCreateWithSize shr $ \n yPtr -> evalContT $ do
liftIO $ Call.assert "zipComplex: shapes mismatch" (shr==shi)
nPtr <- Call.cint n
xrPtr <- ContT $ withForeignPtr xr
xiPtr <- ContT $ withForeignPtr xi
let yrPtr = castPtr yPtr
incxPtr <- Call.cint 1
incyPtr <- Call.cint 2
liftIO $ do
BlasGen.copy nPtr xrPtr incxPtr yrPtr incyPtr
BlasGen.copy nPtr xiPtr incxPtr (advancePtr yrPtr 1) incyPtr
complexToRealPart, complexToImaginaryPart ::
(Shape.C sh, Class.Real a) => Vector sh (Complex a) -> Vector sh a
complexToRealPart = complexToPart 0
complexToImaginaryPart = complexToPart 1
complexToPart ::
(Shape.C sh, Class.Real a) => Int -> Vector sh (Complex a) -> Vector sh a
complexToPart offset (Array sh x) =
Array.unsafeCreateWithSize sh $ \n yPtr -> evalContT $ do
nPtr <- Call.cint n
xPtr <- ContT $ withForeignPtr x
incxPtr <- Call.cint 2
incyPtr <- Call.cint 1
liftIO $
BlasGen.copy nPtr
(advancePtr (castPtr xPtr) offset) incxPtr yPtr incyPtr
unzipComplex ::
(Shape.C sh, Class.Real a) =>
Vector sh (Complex a) -> (Vector sh a, Vector sh a)
unzipComplex x = (complexToRealPart x, complexToImaginaryPart x)
data RandomDistribution =
UniformBox01
| UniformBoxPM1
| Normal
| UniformDisc
| UniformCircle
deriving (Eq, Ord, Show, Enum)
random ::
(Shape.C sh, Class.Floating a) =>
RandomDistribution -> sh -> Word64 -> Vector sh a
random dist sh seed = Array.unsafeCreateWithSize sh $ \n xPtr ->
evalContT $ do
nPtr <- Call.cint n
distPtr <-
Call.cint $
case (getConst $ isComplexInFunctor xPtr, dist) of
(_, UniformBox01) -> 1
(_, UniformBoxPM1) -> 2
(_, Normal) -> 3
(True, UniformDisc) -> 4
(True, UniformCircle) -> 5
(False, UniformDisc) -> 2
(False, UniformCircle) ->
error
"Vector.random: UniformCircle not supported for real numbers"
iseedPtr <- Call.allocaArray 4
liftIO $ do
pokeElemOff iseedPtr 0 $ fromIntegral ((seed `shiftR` 35) .&. 0xFFF)
pokeElemOff iseedPtr 1 $ fromIntegral ((seed `shiftR` 23) .&. 0xFFF)
pokeElemOff iseedPtr 2 $ fromIntegral ((seed `shiftR` 11) .&. 0xFFF)
pokeElemOff iseedPtr 3 $ fromIntegral ((seed.&.0x7FF)*2+1)
LapackGen.larnv distPtr iseedPtr nPtr xPtr
isComplexInFunctor :: (Class.Floating a) => f a -> Const Bool a
isComplexInFunctor _ =
Class.switchFloating (Const False) (Const False) (Const True) (Const True)