#if __GLASGOW_HASKELL__ < 709
#else
#endif
module Algebra.Lattice.Divisibility (
Divisibility(..)
) where
import Prelude ()
import Prelude.Compat
import Algebra.Lattice
import Algebra.PartialOrd
import Control.DeepSeq
import Control.Monad
import Data.Data
import Data.Hashable
import GHC.Generics
newtype Divisibility a = Divisibility { getDivisibility :: a }
deriving ( Eq, Ord, Show, Read, Data, Typeable, Generic, Functor, Foldable, Traversable
#if __GLASGOW_HASKELL__ >= 706
, Generic1
#endif
)
instance Applicative Divisibility where
pure = return
(<*>) = ap
instance Monad Divisibility where
return = Divisibility
Divisibility x >>= f = f x
instance NFData a => NFData (Divisibility a) where
rnf (Divisibility a) = rnf a
instance Hashable a => Hashable (Divisibility a)
instance Integral a => JoinSemiLattice (Divisibility a) where
Divisibility x \/ Divisibility y = Divisibility (lcm x y)
instance Integral a => MeetSemiLattice (Divisibility a) where
Divisibility x /\ Divisibility y = Divisibility (gcd x y)
instance Integral a => Lattice (Divisibility a) where
instance Integral a => BoundedJoinSemiLattice (Divisibility a) where
bottom = Divisibility 1
instance (Eq a, Integral a) => PartialOrd (Divisibility a) where
leq (Divisibility a) (Divisibility b) = b `mod` a == 0