{-# LANGUAGE CPP #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE ScopedTypeVariables #-} #ifdef TRUSTWORTHY {-# LANGUAGE Trustworthy #-} #endif #ifndef MIN_VERSION_containers #define MIN_VERSION_containers(x,y,z) 1 #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Lens.Traversal -- Copyright : (C) 2012-13 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : Rank2Types -- -- A @'Traversal' s t a b@ is a generalization of 'traverse' from -- 'Traversable'. It allows you to 'traverse' over a structure and change out -- its contents with monadic or 'Applicative' side-effects. Starting from -- -- @ -- 'traverse' :: ('Traversable' t, 'Applicative' f) => (a -> f b) -> t a -> f (t b) -- @ -- -- we monomorphize the contents and result to obtain -- -- @ -- type 'Traversal' s t a b = forall f. 'Applicative' f => (a -> f b) -> s -> f t -- @ -- -- While a 'Traversal' isn't quite a 'Fold', it _can_ be used for -- 'Control.Lens.Getter.Getting' like a 'Fold', because given a -- 'Data.Monoid.Monoid' @m@, we have an 'Applicative' -- for @('Const' m)@. Everything you know how to do with a 'Traversable' -- container, you can with with a 'Traversal', and here we provide -- combinators that generalize the usual 'Traversable' operations. ---------------------------------------------------------------------------- module Control.Lens.Traversal ( -- * Traversals Traversal, Traversal' , IndexedTraversal, IndexedTraversal' , ATraversal, ATraversal' , AnIndexedTraversal, AnIndexedTraversal' , Traversing, Traversing' -- * Traversing and Lensing , traverseOf, forOf, sequenceAOf , mapMOf, forMOf, sequenceOf , transposeOf , mapAccumLOf, mapAccumROf , scanr1Of, scanl1Of , failover -- * Monomorphic Traversals , cloneTraversal , cloneIndexPreservingTraversal , cloneIndexedTraversal -- * Parts and Holes , partsOf, partsOf' , unsafePartsOf, unsafePartsOf' , holesOf , singular, unsafeSingular -- * Common Traversals , Traversable(traverse) , both , beside , taking , dropping -- * Indexed Traversals -- ** Common , ignored , TraverseMin(..) , TraverseMax(..) , traversed , traversed64 , elementOf , element , elementsOf , elements -- ** Combinators , ipartsOf , ipartsOf' , iunsafePartsOf , iunsafePartsOf' , itraverseOf , iforOf , imapMOf , iforMOf , imapAccumROf , imapAccumLOf -- * Implementation Details , Bazaar(..) , Bazaar' , loci , iloci ) where import Control.Applicative as Applicative import Control.Applicative.Backwards import Control.Category import Control.Comonad import Control.Monad import Control.Lens.Combinators import Control.Lens.Fold import Control.Lens.Getter (coerced) import Control.Lens.Internal.Bazaar import Control.Lens.Internal.Context import Control.Lens.Internal.Indexed import Control.Lens.Type import Control.Monad.Trans.State.Lazy import Data.Functor.Compose import Data.Int import Data.IntMap as IntMap import Data.Map as Map import Data.Monoid import Data.Traversable import Data.Tuple (swap) import Data.Profunctor import Data.Profunctor.Rep import Data.Profunctor.Unsafe import Prelude hiding ((.),id) -- $setup -- >>> :set -XNoOverloadedStrings -- >>> import Control.Lens -- >>> import Control.DeepSeq (NFData (..), force) -- >>> import Control.Exception (evaluate) -- >>> import Data.Maybe (fromMaybe) -- >>> import Data.Void -- >>> import System.Timeout (timeout) -- >>> let timingOut :: NFData a => a -> IO a; timingOut = fmap (fromMaybe (error "timeout")) . timeout (5*10^6) . evaluate . force ------------------------------------------------------------------------------ -- Traversals ------------------------------------------------------------------------------ -- | When you see this as an argument to a function, it expects a 'Traversal'. type ATraversal s t a b = LensLike (Bazaar (->) a b) s t a b -- | @ -- type 'ATraversal'' = 'Simple' 'ATraversal' -- @ type ATraversal' s a = ATraversal s s a a -- | When you see this as an argument to a function, it expects an 'IndexedTraversal'. type AnIndexedTraversal i s t a b = Over (Indexed i) (Bazaar (Indexed i) a b) s t a b -- | @ -- type 'AnIndexedTraversal'' = 'Simple' ('AnIndexedTraversal' i) -- @ type AnIndexedTraversal' i s a = AnIndexedTraversal i s s a a -- | When you see this as an argument to a function, it expects -- -- * to be indexed if @p@ is an instance of 'Indexed' i, -- -- * to be unindexed if @p@ is @(->)@, -- -- * a 'Traversal' if @f@ is 'Applicative', -- -- * a 'Getter' if @f@ is only 'Gettable', -- -- * a 'Lens' if @p@ is only a 'Functor', -- -- * a 'Fold' if 'f' is 'Gettable' and 'Applicative'. type Traversing p f s t a b = Over p (BazaarT p f a b) s t a b -- | @ -- type 'Traversing'' f = 'Simple' ('Traversing' f) -- @ type Traversing' p f s a = Traversing p f s s a a -------------------------- -- Traversal Combinators -------------------------- -- | Map each element of a structure targeted by a 'Lens' or 'Traversal', -- evaluate these actions from left to right, and collect the results. -- -- This function is only provided for consistency, 'id' is strictly more general. -- -- >>> traverseOf each print (1,2,3) -- 1 -- 2 -- 3 -- ((),(),()) -- -- @ -- 'traverseOf' ≡ 'id' -- 'itraverseOf' l ≡ 'traverseOf' l '.' 'Indexed' -- @ -- -- -- This yields the obvious law: -- -- @ -- 'traverse' ≡ 'traverseOf' 'traverse' -- @ -- -- @ -- 'traverseOf' :: 'Functor' f => 'Iso' s t a b -> (a -> f b) -> s -> f t -- 'traverseOf' :: 'Functor' f => 'Lens' s t a b -> (a -> f b) -> s -> f t -- 'traverseOf' :: 'Applicative' f => 'Traversal' s t a b -> (a -> f b) -> s -> f t -- @ traverseOf :: Over p f s t a b -> p a (f b) -> s -> f t traverseOf = id {-# INLINE traverseOf #-} -- | A version of 'traverseOf' with the arguments flipped, such that: -- -- >>> forOf each (1,2,3) print -- 1 -- 2 -- 3 -- ((),(),()) -- -- This function is only provided for consistency, 'flip' is strictly more general. -- -- @ -- 'forOf' ≡ 'flip' -- 'forOf' ≡ 'flip' . 'traverseOf' -- @ -- -- @ -- 'for' ≡ 'forOf' 'traverse' -- 'Control.Lens.Indexed.ifor' l s ≡ 'for' l s '.' 'Indexed' -- @ -- -- @ -- 'forOf' :: 'Functor' f => 'Iso' s t a b -> s -> (a -> f b) -> f t -- 'forOf' :: 'Functor' f => 'Lens' s t a b -> s -> (a -> f b) -> f t -- 'forOf' :: 'Applicative' f => 'Traversal' s t a b -> s -> (a -> f b) -> f t -- @ forOf :: Over p f s t a b -> s -> p a (f b) -> f t forOf = flip {-# INLINE forOf #-} -- | Evaluate each action in the structure from left to right, and collect -- the results. -- -- >>> sequenceAOf both ([1,2],[3,4]) -- [(1,3),(1,4),(2,3),(2,4)] -- -- @ -- 'sequenceA' ≡ 'sequenceAOf' 'traverse' ≡ 'traverse' 'id' -- 'sequenceAOf' l ≡ 'traverseOf' l 'id' ≡ l 'id' -- @ -- -- @ -- 'sequenceAOf' :: 'Functor' f => 'Iso' s t (f b) b -> s -> f t -- 'sequenceAOf' :: 'Functor' f => 'Lens' s t (f b) b -> s -> f t -- 'sequenceAOf' :: 'Applicative' f => 'Traversal' s t (f b) b -> s -> f t -- @ sequenceAOf :: LensLike f s t (f b) b -> s -> f t sequenceAOf l = l id {-# INLINE sequenceAOf #-} -- | Map each element of a structure targeted by a 'Lens' to a monadic action, -- evaluate these actions from left to right, and collect the results. -- -- >>> mapMOf both (\x -> [x, x + 1]) (1,3) -- [(1,3),(1,4),(2,3),(2,4)] -- -- @ -- 'mapM' ≡ 'mapMOf' 'traverse' -- 'imapMOf' l ≡ 'forM' l '.' 'Indexed' -- @ -- -- @ -- 'mapMOf' :: 'Monad' m => 'Iso' s t a b -> (a -> m b) -> s -> m t -- 'mapMOf' :: 'Monad' m => 'Lens' s t a b -> (a -> m b) -> s -> m t -- 'mapMOf' :: 'Monad' m => 'Traversal' s t a b -> (a -> m b) -> s -> m t -- @ mapMOf :: Profunctor p => Over p (WrappedMonad m) s t a b -> p a (m b) -> s -> m t mapMOf l cmd = unwrapMonad #. l (WrapMonad #. cmd) {-# INLINE mapMOf #-} -- | 'forMOf' is a flipped version of 'mapMOf', consistent with the definition of 'forM'. -- -- >>> forMOf both (1,3) $ \x -> [x, x + 1] -- [(1,3),(1,4),(2,3),(2,4)] -- -- @ -- 'forM' ≡ 'forMOf' 'traverse' -- 'forMOf' l ≡ 'flip' ('mapMOf' l) -- 'iforMOf' l s ≡ 'forM' l s '.' 'Indexed' -- @ -- -- @ -- 'forMOf' :: 'Monad' m => 'Iso' s t a b -> s -> (a -> m b) -> m t -- 'forMOf' :: 'Monad' m => 'Lens' s t a b -> s -> (a -> m b) -> m t -- 'forMOf' :: 'Monad' m => 'Traversal' s t a b -> s -> (a -> m b) -> m t -- @ forMOf :: Profunctor p => Over p (WrappedMonad m) s t a b -> s -> p a (m b) -> m t forMOf l a cmd = unwrapMonad (l (WrapMonad #. cmd) a) {-# INLINE forMOf #-} -- | Sequence the (monadic) effects targeted by a 'Lens' in a container from left to right. -- -- >>> sequenceOf each ([1,2],[3,4],[5,6]) -- [(1,3,5),(1,3,6),(1,4,5),(1,4,6),(2,3,5),(2,3,6),(2,4,5),(2,4,6)] -- -- @ -- 'sequence' ≡ 'sequenceOf' 'traverse' -- 'sequenceOf' l ≡ 'mapMOf' l 'id' -- 'sequenceOf' l ≡ 'unwrapMonad' '.' l 'WrapMonad' -- @ -- -- @ -- 'sequenceOf' :: 'Monad' m => 'Iso' s t (m b) b -> s -> m t -- 'sequenceOf' :: 'Monad' m => 'Lens' s t (m b) b -> s -> m t -- 'sequenceOf' :: 'Monad' m => 'Traversal' s t (m b) b -> s -> m t -- @ sequenceOf :: LensLike (WrappedMonad m) s t (m b) b -> s -> m t sequenceOf l = unwrapMonad #. l WrapMonad {-# INLINE sequenceOf #-} -- | This generalizes 'Data.List.transpose' to an arbitrary 'Traversal'. -- -- Note: 'Data.List.transpose' handles ragged inputs more intelligently, but for non-ragged inputs: -- -- >>> transposeOf traverse [[1,2,3],[4,5,6]] -- [[1,4],[2,5],[3,6]] -- -- @ -- 'Data.List.transpose' ≡ 'transposeOf' 'traverse' -- @ -- -- Since every 'Lens' is a 'Traversal', we can use this as a form of -- monadic strength as well: -- -- @ -- 'transposeOf' 'Control.Lens.Tuple._2' :: (b, [a]) -> [(b, a)] -- @ transposeOf :: LensLike ZipList s t [a] a -> s -> [t] transposeOf l = getZipList #. l ZipList {-# INLINE transposeOf #-} -- | This generalizes 'Data.Traversable.mapAccumR' to an arbitrary 'Traversal'. -- -- @ -- 'mapAccumR' ≡ 'mapAccumROf' 'traverse' -- @ -- -- 'mapAccumROf' accumulates 'State' from right to left. -- -- @ -- 'mapAccumROf' :: 'Iso' s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- 'mapAccumROf' :: 'Lens' s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- 'mapAccumROf' :: 'Traversal' s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- @ -- -- @ -- 'mapAccumROf' :: 'LensLike' ('Backwards' ('State' acc)) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- @ mapAccumROf :: Conjoined p => Over p (Backwards (State acc)) s t a b -> p acc (a -> (acc, b)) -> acc -> s -> (acc, t) mapAccumROf = mapAccumLOf . backwards {-# INLINE mapAccumROf #-} -- | This generalizes 'Data.Traversable.mapAccumL' to an arbitrary 'Traversal'. -- -- @ -- 'mapAccumL' ≡ 'mapAccumLOf' 'traverse' -- @ -- -- 'mapAccumLOf' accumulates 'State' from left to right. -- -- @ -- 'mapAccumLOf' :: 'Iso' s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- 'mapAccumLOf' :: 'Lens' s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- 'mapAccumLOf' :: 'Traversal' s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- @ -- -- @ -- 'mapAccumLOf' :: 'LensLike' ('State' acc) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- 'mapAccumLOf' l f acc0 s = 'swap' ('runState' (l (\a -> 'state' (\acc -> 'swap' (f acc a))) s) acc0) -- @ -- mapAccumLOf :: Conjoined p => Over p (State acc) s t a b -> p acc (a -> (acc, b)) -> acc -> s -> (acc, t) mapAccumLOf l f acc0 s = swap (runState (l g s) acc0) where g = cotabulate $ \wa -> state $ \acc -> swap (corep f (acc <$ wa) (extract wa)) -- This would be much cleaner if the argument order for the function was swapped. {-# INLINE mapAccumLOf #-} -- | This permits the use of 'scanr1' over an arbitrary 'Traversal' or 'Lens'. -- -- @ -- 'scanr1' ≡ 'scanr1Of' 'traverse' -- @ -- -- @ -- 'scanr1Of' :: 'Iso' s t a a -> (a -> a -> a) -> s -> t -- 'scanr1Of' :: 'Lens' s t a a -> (a -> a -> a) -> s -> t -- 'scanr1Of' :: 'Traversal' s t a a -> (a -> a -> a) -> s -> t -- @ scanr1Of :: LensLike (Backwards (State (Maybe a))) s t a a -> (a -> a -> a) -> s -> t scanr1Of l f = snd . mapAccumROf l step Nothing where step Nothing a = (Just a, a) step (Just s) a = (Just r, r) where r = f a s {-# INLINE scanr1Of #-} -- | This permits the use of 'scanl1' over an arbitrary 'Traversal' or 'Lens'. -- -- @ -- 'scanl1' ≡ 'scanl1Of' 'traverse' -- @ -- -- @ -- 'scanl1Of' :: 'Iso' s t a a -> (a -> a -> a) -> s -> t -- 'scanl1Of' :: 'Lens' s t a a -> (a -> a -> a) -> s -> t -- 'scanl1Of' :: 'Traversal' s t a a -> (a -> a -> a) -> s -> t -- @ scanl1Of :: LensLike (State (Maybe a)) s t a a -> (a -> a -> a) -> s -> t scanl1Of l f = snd . mapAccumLOf l step Nothing where step Nothing a = (Just a, a) step (Just s) a = (Just r, r) where r = f s a {-# INLINE scanl1Of #-} -- | This 'Traversal' allows you to 'traverse' the individual stores in a 'Bazaar'. loci :: Traversal (Bazaar (->) a c s) (Bazaar (->) b c s) a b loci f w = getCompose (runBazaar w (Compose #. fmap sell . f)) {-# INLINE loci #-} -- | This 'IndexedTraversal' allows you to 'traverse' the individual stores in -- a 'Bazaar' with access to their indices. iloci :: IndexedTraversal i (Bazaar (Indexed i) a c s) (Bazaar (Indexed i) b c s) a b iloci f w = getCompose (runBazaar w (Compose #. Indexed (\i -> fmap (indexed sell i) . indexed f i))) {-# INLINE iloci #-} ------------------------------------------------------------------------------- -- Parts and Holes ------------------------------------------------------------------------------- -- | 'partsOf' turns a 'Traversal' into a 'Lens' that resembles an early version of the 'Data.Data.Lens.uniplate' (or 'Data.Data.Lens.biplate') type. -- -- /Note:/ You should really try to maintain the invariant of the number of children in the list. -- -- Any extras will be lost. If you do not supply enough, then the remainder will come from the original structure. -- -- So technically, this is only a 'Lens' if you do not change the number of results it returns. -- -- When applied to a 'Fold' the result is merely a 'Getter'. -- -- @ -- 'partsOf' :: 'Iso'' s a -> 'Lens'' s [a] -- 'partsOf' :: 'Lens'' s a -> 'Lens'' s [a] -- 'partsOf' :: 'Traversal'' s a -> 'Lens'' s [a] -- 'partsOf' :: 'Fold' s a -> 'Getter' s [a] -- 'partsOf' :: 'Getter' s a -> 'Getter' s [a] -- @ partsOf :: Functor f => Traversing (->) f s t a a -> LensLike f s t [a] [a] partsOf l f s = outs b <$> f (ins b) where b = l sell s {-# INLINE partsOf #-} -- | An indexed version of 'partsOf' that receives the entire list of indices as its index. ipartsOf :: forall i p f s t a. (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a a -> Over p f s t [a] [a] ipartsOf l f s = outs b <$> indexed f (is :: [i]) as where (is,as) = unzip (pins b) b = l sell s {-# INLINE ipartsOf #-} -- | A type-restricted version of 'partsOf' that can only be used with a 'Traversal'. partsOf' :: ATraversal s t a a -> Lens s t [a] [a] partsOf' l f s = outs b <$> f (ins b) where b = l sell s {-# INLINE partsOf' #-} -- | A type-restricted version of 'ipartsOf' that can only be used with an 'IndexedTraversal'. ipartsOf' :: forall i p f s t a. (Indexable [i] p, Functor f) => Over (Indexed i) (Bazaar' (Indexed i) a) s t a a -> Over p f s t [a] [a] ipartsOf' l f s = outs b <$> indexed f (is :: [i]) as where (is,as) = unzip (pins b) b = l sell s {-# INLINE ipartsOf' #-} -- | 'unsafePartsOf' turns a 'Traversal' into a 'Data.Data.Lens.uniplate' (or 'Data.Data.Lens.biplate') family. -- -- If you do not need the types of @s@ and @t@ to be different, it is recommended that -- you use 'partsOf'. -- -- It is generally safer to traverse with the 'Bazaar' rather than use this -- combinator. However, it is sometimes convenient. -- -- This is unsafe because if you don't supply at least as many @b@'s as you were -- given @a@'s, then the reconstruction of @t@ /will/ result in an error! -- -- When applied to a 'Fold' the result is merely a 'Getter' (and becomes safe). -- -- @ -- 'unsafePartsOf' :: 'Iso' s t a b -> 'Lens' s t [a] [b] -- 'unsafePartsOf' :: 'Lens' s t a b -> 'Lens' s t [a] [b] -- 'unsafePartsOf' :: 'Traversal' s t a b -> 'Lens' s t [a] [b] -- 'unsafePartsOf' :: 'Fold' s a -> 'Getter' s [a] -- 'unsafePartsOf' :: 'Getter' s a -> 'Getter' s [a] -- @ unsafePartsOf :: Functor f => Traversing (->) f s t a b -> LensLike f s t [a] [b] unsafePartsOf l f s = unsafeOuts b <$> f (ins b) where b = l sell s {-# INLINE unsafePartsOf #-} -- | An indexed version of 'unsafePartsOf' that receives the entire list of indices as its index. iunsafePartsOf :: forall i p f s t a b. (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a b -> Over p f s t [a] [b] iunsafePartsOf l f s = unsafeOuts b <$> indexed f (is :: [i]) as where (is,as) = unzip (pins b) b = l sell s {-# INLINE iunsafePartsOf #-} unsafePartsOf' :: ATraversal s t a b -> Lens s t [a] [b] unsafePartsOf' l f s = unsafeOuts b <$> f (ins b) where b = l sell s {-# INLINE unsafePartsOf' #-} iunsafePartsOf' :: forall i s t a b. Over (Indexed i) (Bazaar (Indexed i) a b) s t a b -> IndexedLens [i] s t [a] [b] iunsafePartsOf' l f s = unsafeOuts b <$> indexed f (is :: [i]) as where (is,as) = unzip (pins b) b = l sell s {-# INLINE iunsafePartsOf' #-} -- | The one-level version of 'Control.Lens.Plated.contextsOf'. This extracts a list of the immediate children according to a given 'Traversal' as editable contexts. -- -- Given a context you can use 'Control.Comonad.Store.Class.pos' to see the values, 'Control.Comonad.Store.Class.peek' at what the structure would be like with an edited result, or simply 'extract' the original structure. -- -- @ -- propChildren l x = childrenOf l x '==' 'map' 'Control.Comonad.Store.Class.pos' ('holesOf' l x) -- propId l x = 'all' ('==' x) ['extract' w | w <- 'holesOf' l x] -- @ -- -- @ -- 'holesOf' :: 'Iso'' s a -> s -> ['Pretext'' (->) a s] -- 'holesOf' :: 'Lens'' s a -> s -> ['Pretext'' (->) a s] -- 'holesOf' :: 'Traversal'' s a -> s -> ['Pretext'' (->) a s] -- 'holesOf' :: 'IndexedLens'' i s a -> s -> ['Pretext'' ('Indexed' i) a s] -- 'holesOf' :: 'IndexedTraversal'' i s a -> s -> ['Pretext'' ('Indexed' i) a s] -- @ holesOf :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t] holesOf l s = f (pins b) (unsafeOuts b) where b = l sell s f [] _ = [] f (wx:xs) g = Pretext (\wxfy -> g . (:Prelude.map extract xs) <$> corep wxfy wx) : f xs (g . (extract wx:)) {-# INLINE holesOf #-} -- | This converts a 'Traversal' that you \"know\" will target one or more elements to a 'Lens'. It can -- also be used to transform a non-empty 'Fold' into a 'Getter' or a non-empty 'MonadicFold' into an -- 'Action'. -- -- The resulting 'Lens', 'Getter', or 'Action' will be partial if the supplied 'Traversal' returns -- no results. -- -- @ -- 'singular' :: 'Traversal' s t a a -> 'Lens' s t a a -- 'singular' :: 'Fold' s a -> 'Getter' s a -- 'singular' :: 'MonadicFold' m s a -> 'Action' m s a -- 'singular' :: 'IndexedTraversal' i s t a a -> 'IndexedLens' i s t a a -- 'singular' :: 'IndexedFold' i s a -> 'IndexedGetter' i s a -- 'singular' :: 'IndexedMonadicFold' i m s a -> 'IndexedAction' i m s a -- @ singular :: (Conjoined p, Functor f) => Over p (BazaarT p f a a) s t a a -> Over p f s t a a singular l pafb s = case pins b of (w:ws) -> unsafeOuts b . (:Prelude.map extract ws) <$> corep pafb w [] -> unsafeOuts b . return <$> corep pafb (error "singular: empty traversal") where b = l sell s {-# INLINE singular #-} -- | This converts a 'Traversal' that you \"know\" will target only one element to a 'Lens'. It can also be -- used to transform a 'Fold' into a 'Getter' or a 'MonadicFold' into an 'Action'. -- -- The resulting 'Lens', 'Getter', or 'Action' will be partial if the 'Traversal' targets nothing -- or more than one element. -- -- @ -- 'unsafeSingular' :: 'Traversal' s t a b -> 'Lens' s t a b -- 'unsafeSingular' :: 'Fold' s a -> 'Getter' s a -- 'unsafeSingular' :: 'MonadicFold' m s a -> 'Action' m s a -- 'unsafeSingular' :: 'IndexedTraversal' i s t a b -> 'IndexedLens' i s t a b -- 'unsafeSingular' :: 'IndexedFold' i s a -> 'IndexedGetter' i s a -- 'unsafeSingular' :: 'IndexedMonadicFold' i m s a -> 'IndexedAction' i m s a -- @ unsafeSingular :: (Conjoined p, Functor f) => Over p (BazaarT p f a b) s t a b -> Over p f s t a b unsafeSingular l pafb s = case pins b of [w] -> unsafeOuts b . return <$> corep pafb w [] -> error "unsafeSingular: empty traversal" _ -> error "unsafeSingular: traversing multiple results" where b = l sell s {-# INLINE unsafeSingular #-} ------------------------------------------------------------------------------ -- Internal functions used by 'partsOf', 'holesOf', etc. ------------------------------------------------------------------------------ ins :: Bizarre (->) w => w a b t -> [a] ins = toListOf (coerced bazaar) {-# INLINE ins #-} pins :: (Bizarre p w, Corepresentable p) => w a b t -> [Corep p a] pins = getConst #. bazaar (cotabulate $ \ra -> Const [ra]) {-# INLINE pins #-} parr :: (Profunctor p, Category p) => (a -> b) -> p a b parr f = lmap f id {-# INLINE parr #-} outs :: (Bizarre p w, Category p) => w a a t -> [a] -> t outs = evalState `rmap` bazaar (parr (state . unconsWithDefault)) {-# INLINE outs #-} unsafeOuts :: (Bizarre p w, Corepresentable p) => w a b t -> [b] -> t unsafeOuts = evalState `rmap` bazaar (cotabulate (\_ -> state (unconsWithDefault fakeVal))) where fakeVal = error "unsafePartsOf': not enough elements were supplied" {-# INLINE unsafeOuts #-} unconsWithDefault :: a -> [a] -> (a,[a]) unconsWithDefault d [] = (d,[]) unconsWithDefault _ (x:xs) = (x,xs) {-# INLINE unconsWithDefault #-} ------------------------------------------------------------------------------ -- Traversals ------------------------------------------------------------------------------ -- | Traverse both parts of a tuple with matching types. -- -- >>> both *~ 10 $ (1,2) -- (10,20) -- -- >>> over both length ("hello","world") -- (5,5) -- -- >>> ("hello","world")^.both -- "helloworld" both :: Traversal (a,a) (b,b) a b both f ~(a,a') = (,) <$> f a <*> f a' {-# INLINE both #-} -- | Apply a different 'Traversal' or 'Fold' to each side of a tuple. -- -- @ -- 'beside' :: 'Traversal' s t a b -> 'Traversal' s' t' a b -> 'Traversal' (s,s') (t,t') a b -- 'beside' :: 'Lens' s t a b -> 'Lens' s' t' a b -> 'Traversal' (s,s') (t,t') a b -- 'beside' :: 'Fold' s a -> 'Fold' s' a -> 'Fold' (s,s') a -- 'beside' :: 'Getter' s a -> 'Getter' s' a -> 'Fold' (s,s') a -- 'beside' :: 'Action' m s a -> 'Action' m s' a -> 'MonadicFold' m (s,s') a -- 'beside' :: 'MonadicFold' m s a -> 'MonadicFold' m s' a -> 'MonadicFold' m (s,s') a -- @ -- -- @ -- 'beside' :: 'IndexedTraversal' i s t a b -> 'IndexedTraversal' i s' t' a b -> 'IndexedTraversal' i (s,s') (t,t') a b -- 'beside' :: 'IndexedLens' i s t a b -> 'IndexedLens' i s' t' a b -> 'IndexedTraversal' i (s,s') (t,t') a b -- 'beside' :: 'IndexedFold' i s a -> 'IndexedFold' i s' a -> 'IndexedFold' i (s,s') a -- 'beside' :: 'IndexedGetter' i s a -> 'IndexedGetter' i s' a -> 'IndexedFold' i (s,s') a -- 'beside' :: 'IndexedAction' i m s a -> 'IndexedAction' i m s' a -> 'IndexedMonadicFold' i m (s,s') a -- 'beside' :: 'IndexedMonadicFold' i m s a -> 'IndexedMonadicFold' i m s' a -> 'IndexedMonadicFold' i m (s,s') a -- @ -- -- @ -- 'beside' :: 'IndexPreservingTraversal' s t a b -> 'IndexPreservingTraversal' s' t' a b -> 'IndexPreservingTraversal' (s,s') (t,t') a b -- 'beside' :: 'IndexPreservingLens' s t a b -> 'IndexPreservingLens' s' t' a b -> 'IndexPreservingTraversal' (s,s') (t,t') a b -- 'beside' :: 'IndexPreservingFold' s a -> 'IndexPreservingFold' s' a -> 'IndexPreservingFold' (s,s') a -- 'beside' :: 'IndexPreservingGetter' s a -> 'IndexPreservingGetter' s' a -> 'IndexPreservingFold' (s,s') a -- 'beside' :: 'IndexPreservingAction' m s a -> 'IndexPreservingAction' m s' a -> 'IndexPreservingMonadicFold' m (s,s') a -- 'beside' :: 'IndexPreservingMonadicFold' m s a -> 'IndexPreservingMonadicFold' m s' a -> 'IndexPreservingMonadicFold' m (s,s') a -- @ -- -- >>> ("hello",["world","!!!"])^..beside id traverse -- ["hello","world","!!!"] beside :: (Representable q, Applicative (Rep q), Applicative f) => Overloading p q f s t a b -> Overloading p q f s' t' a b -> Overloading p q f (s,s') (t,t') a b beside l r f = tabulate $ \ ~(s,s') -> liftA2 (,) <$> rep (l f) s <*> rep (r f) s' {-# INLINE beside #-} -- | Visit the first /n/ targets of a 'Traversal', 'Fold', 'Getter' or 'Lens'. -- -- >>> [("hello","world"),("!!!","!!!")]^.. taking 2 (traverse.both) -- ["hello","world"] -- -- >>> timingOut $ [1..] ^.. taking 3 traverse -- [1,2,3] -- -- >>> over (taking 5 traverse) succ "hello world" -- "ifmmp world" -- -- @ -- 'taking' :: 'Int' -> 'Traversal'' s a -> 'Traversal'' s a -- 'taking' :: 'Int' -> 'Lens'' s a -> 'Traversal'' s a -- 'taking' :: 'Int' -> 'Iso'' s a -> 'Traversal'' s a -- 'taking' :: 'Int' -> 'Prism'' s a -> 'Traversal'' s a -- 'taking' :: 'Int' -> 'Getter' s a -> 'Fold' s a -- 'taking' :: 'Int' -> 'Fold' s a -> 'Fold' s a -- 'taking' :: 'Int' -> 'Action' m s a -> 'MonadicFold' m s a -- 'taking' :: 'Int' -> 'MonadicFold' m s a -> 'MonadicFold' m s a -- 'taking' :: 'Int' -> 'IndexedTraversal'' i s a -> 'IndexedTraversal'' i s a -- 'taking' :: 'Int' -> 'IndexedLens'' i s a -> 'IndexedTraversal'' i s a -- 'taking' :: 'Int' -> 'IndexedGetter' i s a -> 'IndexedFold' i s a -- 'taking' :: 'Int' -> 'IndexedFold' i s a -> 'IndexedFold' i s a -- 'taking' :: 'Int' -> 'IndexedAction' i m s a -> 'IndexedMonadicFold' i m s a -- 'taking' :: 'Int' -> 'IndexedMonadicFold' i m s a -> 'IndexedMonadicFold' i m s a -- @ taking :: (Conjoined p, Applicative f) => Int -> Over p (BazaarT p f a a) s t a a -> Over p f s t a a taking n l pafb s = outs b <$> traverse (corep pafb) (take n $ pins b) where b = l sell s {-# INLINE taking #-} -- | Visit all but the first /n/ targets of a 'Traversal', 'Fold', 'Getter' or 'Lens'. -- -- >>> ("hello","world") ^? dropping 1 both -- Just "world" -- -- Dropping works on infinite traversals as well: -- -- >>> [1..] ^? dropping 1 folded -- Just 2 -- -- @ -- 'dropping' :: 'Int' -> 'Traversal'' s a -> 'Traversal'' s a -- 'dropping' :: 'Int' -> 'Lens'' s a -> 'Traversal'' s a -- 'dropping' :: 'Int' -> 'Iso'' s a -> 'Traversal'' s a -- 'dropping' :: 'Int' -> 'Prism'' s a -> 'Traversal'' s a -- 'dropping' :: 'Int' -> 'Getter' s a -> 'Fold' s a -- 'dropping' :: 'Int' -> 'Fold' s a -> 'Fold' s a -- 'dropping' :: 'Int' -> 'Action' m s a -> 'MonadicFold' m s a -- 'dropping' :: 'Int' -> 'MonadicFold' m s a -> 'MonadicFold' m s a -- 'dropping' :: 'Int' -> 'IndexedTraversal'' i s a -> 'IndexedTraversal'' i s a -- 'dropping' :: 'Int' -> 'IndexedLens'' i s a -> 'IndexedTraversal'' i s a -- 'dropping' :: 'Int' -> 'IndexedGetter' i s a -> 'IndexedFold' i s a -- 'dropping' :: 'Int' -> 'IndexedFold' i s a -> 'IndexedFold' i s a -- 'dropping' :: 'Int' -> 'IndexedAction' i m s a -> 'IndexedMonadicFold' i m s a -- 'dropping' :: 'Int' -> 'IndexedMonadicFold' i m s a -> 'IndexedMonadicFold' i m s a -- @ dropping :: (Conjoined p, Applicative f) => Int -> Over p (Indexing f) s t a a -> Over p f s t a a dropping n l pafb s = snd $ runIndexing (l paifb s) 0 where paifb = cotabulate $ \wa -> Indexing $ \i -> let i' = i + 1 in i' `seq` (i', if i < n then pure (extract wa) else corep pafb wa) {-# INLINE dropping #-} ------------------------------------------------------------------------------ -- Cloning Traversals ------------------------------------------------------------------------------ -- | A 'Traversal' is completely characterized by its behavior on a 'Bazaar'. -- -- Cloning a 'Traversal' is one way to make sure you aren't given -- something weaker, such as a 'Fold' and can be -- used as a way to pass around traversals that have to be monomorphic in @f@. -- -- Note: This only accepts a proper 'Traversal' (or 'Lens'). To clone a 'Lens' -- as such, use 'Control.Lens.Lens.cloneLens'. -- -- Note: It is usually better to use 'Control.Lens.Reified.ReifiedTraversal' and -- 'Control.Lens.Reified.reflectTraversal' than to 'cloneTraversal'. The -- former can execute at full speed, while the latter needs to round trip through -- the 'Bazaar'. -- -- >>> let foo l a = (view (coerced (cloneTraversal l)) a, set (cloneTraversal l) 10 a) -- >>> foo both ("hello","world") -- ("helloworld",(10,10)) -- -- @ -- 'cloneTraversal' :: 'LensLike' ('Bazaar' (->) a b) s t a b -> 'Traversal' s t a b -- @ cloneTraversal :: ATraversal s t a b -> Traversal s t a b cloneTraversal l f = bazaar f . l sell {-# INLINE cloneTraversal #-} -- | Clone a 'Traversal' yielding an 'IndexPreservingTraversal' that passes through -- whatever index it is composed with. cloneIndexPreservingTraversal :: ATraversal s t a b -> IndexPreservingTraversal s t a b cloneIndexPreservingTraversal l pafb = cotabulate $ \ws -> runBazaar (l sell (extract ws)) $ \a -> corep pafb (a <$ ws) {-# INLINE cloneIndexPreservingTraversal #-} -- | Clone an 'IndexedTraversal' yielding an 'IndexedTraversal' with the same index. cloneIndexedTraversal :: AnIndexedTraversal i s t a b -> IndexedTraversal i s t a b cloneIndexedTraversal l f = bazaar (Indexed (indexed f)) . l sell {-# INLINE cloneIndexedTraversal #-} ------------------------------------------------------------------------------ -- Indexed Traversals ------------------------------------------------------------------------------ -- | Traversal with an index. -- -- /NB:/ When you don't need access to the index then you can just apply your 'IndexedTraversal' -- directly as a function! -- -- @ -- 'itraverseOf' ≡ 'Control.Lens.Indexed.withIndex' -- 'Control.Lens.Traversal.traverseOf' l = 'itraverseOf' l '.' 'const' = 'id' -- @ -- -- @ -- 'itraverseOf' :: 'Functor' f => 'IndexedLens' i s t a b -> (i -> a -> f b) -> s -> f t -- 'itraverseOf' :: 'Applicative' f => 'IndexedTraversal' i s t a b -> (i -> a -> f b) -> s -> f t -- @ itraverseOf :: (Indexed i a (f b) -> s -> f t) -> (i -> a -> f b) -> s -> f t itraverseOf l = l .# Indexed {-# INLINE itraverseOf #-} -- | Traverse with an index (and the arguments flipped). -- -- @ -- 'Control.Lens.Traversal.forOf' l a ≡ 'iforOf' l a '.' 'const' -- 'iforOf' ≡ 'flip' '.' 'itraverseOf' -- @ -- -- @ -- 'iforOf' :: 'Functor' f => 'IndexedLens' i s t a b -> s -> (i -> a -> f b) -> f t -- 'iforOf' :: 'Applicative' f => 'IndexedTraversal' i s t a b -> s -> (i -> a -> f b) -> f t -- @ iforOf :: (Indexed i a (f b) -> s -> f t) -> s -> (i -> a -> f b) -> f t iforOf = flip . itraverseOf {-# INLINE iforOf #-} -- | Map each element of a structure targeted by a 'Lens' to a monadic action, -- evaluate these actions from left to right, and collect the results, with access -- its position. -- -- When you don't need access to the index 'mapMOf' is more liberal in what it can accept. -- -- @ -- 'Control.Lens.Traversal.mapMOf' l ≡ 'imapMOf' l '.' 'const' -- @ -- -- @ -- 'imapMOf' :: 'Monad' m => 'IndexedLens' i s t a b -> (i -> a -> m b) -> s -> m t -- 'imapMOf' :: 'Monad' m => 'IndexedTraversal' i s t a b -> (i -> a -> m b) -> s -> m t -- @ imapMOf :: (Indexed i a (WrappedMonad m b) -> s -> WrappedMonad m t) -> (i -> a -> m b) -> s -> m t imapMOf l = mapMOf l .# Indexed {-# INLINE imapMOf #-} -- | Map each element of a structure targeted by a 'Lens' to a monadic action, -- evaluate these actions from left to right, and collect the results, with access -- its position (and the arguments flipped). -- -- @ -- 'Control.Lens.Traversal.forMOf' l a ≡ 'iforMOf' l a '.' 'const' -- 'iforMOf' ≡ 'flip' '.' 'imapMOf' -- @ -- -- @ -- 'iforMOf' :: 'Monad' m => 'IndexedLens' i s t a b -> s -> (i -> a -> m b) -> m t -- 'iforMOf' :: 'Monad' m => 'IndexedTraversal' i s t a b -> s -> (i -> a -> m b) -> m t -- @ iforMOf :: (Indexed i a (WrappedMonad m b) -> s -> WrappedMonad m t) -> s -> (i -> a -> m b) -> m t iforMOf = flip . imapMOf {-# INLINE iforMOf #-} -- | Generalizes 'Data.Traversable.mapAccumR' to an arbitrary 'IndexedTraversal' with access to the index. -- -- 'imapAccumROf' accumulates state from right to left. -- -- @ -- 'Control.Lens.Traversal.mapAccumROf' l ≡ 'imapAccumROf' l '.' 'const' -- @ -- -- @ -- 'imapAccumROf' :: 'IndexedLens' i s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- 'imapAccumROf' :: 'IndexedTraversal' i s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- @ imapAccumROf :: Over (Indexed i) (Backwards (State acc)) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) imapAccumROf l = mapAccumROf l .# Indexed {-# INLINE imapAccumROf #-} -- | Generalizes 'Data.Traversable.mapAccumL' to an arbitrary 'IndexedTraversal' with access to the index. -- -- 'imapAccumLOf' accumulates state from left to right. -- -- @ -- 'Control.Lens.Traversal.mapAccumLOf' l ≡ 'imapAccumLOf' l '.' 'const' -- @ -- -- @ -- 'imapAccumLOf' :: 'IndexedLens' i s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- 'imapAccumLOf' :: 'IndexedTraversal' i s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) -- @ imapAccumLOf :: Over (Indexed i) (State acc) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) imapAccumLOf l = mapAccumLOf l .# Indexed {-# INLINE imapAccumLOf #-} ------------------------------------------------------------------------------ -- Common Indexed Traversals ------------------------------------------------------------------------------ -- | Traverse any 'Traversable' container. This is an 'IndexedTraversal' that is indexed by ordinal position. traversed :: Traversable f => IndexedTraversal Int (f a) (f b) a b traversed = conjoined traverse (indexing traverse) {-# INLINE traversed #-} -- | Traverse any 'Traversable' container. This is an 'IndexedTraversal' that is indexed by ordinal position. traversed64 :: Traversable f => IndexedTraversal Int64 (f a) (f b) a b traversed64 = conjoined traverse (indexing64 traverse) {-# INLINE traversed64 #-} -- | This is the trivial empty 'Traversal'. -- -- @ -- 'ignored' :: 'IndexedTraversal' i s s a b -- @ -- -- @ -- 'ignored' ≡ 'const' 'pure' -- @ -- -- >>> 6 & ignored %~ absurd -- 6 ignored :: Applicative f => pafb -> s -> f s ignored _ = pure {-# INLINE ignored #-} -- | Allows 'IndexedTraversal' the value at the smallest index. class Ord k => TraverseMin k m | m -> k where -- | 'IndexedTraversal' of the element with the smallest index. traverseMin :: IndexedTraversal' k (m v) v instance TraverseMin Int IntMap where traverseMin f m = case IntMap.minViewWithKey m of #if MIN_VERSION_containers(0,5,0) Just ((k,a), _) -> indexed f k a <&> \v -> IntMap.updateMin (const (Just v)) m #else Just ((k,a), _) -> indexed f k a <&> \v -> IntMap.updateMin (const v) m #endif Nothing -> pure m {-# INLINE traverseMin #-} instance Ord k => TraverseMin k (Map k) where traverseMin f m = case Map.minViewWithKey m of Just ((k, a), _) -> indexed f k a <&> \v -> Map.updateMin (const (Just v)) m Nothing -> pure m {-# INLINE traverseMin #-} -- | Allows 'IndexedTraversal' of the value at the largest index. class Ord k => TraverseMax k m | m -> k where -- | 'IndexedTraversal' of the element at the largest index. traverseMax :: IndexedTraversal' k (m v) v instance TraverseMax Int IntMap where traverseMax f m = case IntMap.maxViewWithKey m of #if MIN_VERSION_containers(0,5,0) Just ((k,a), _) -> indexed f k a <&> \v -> IntMap.updateMax (const (Just v)) m #else Just ((k,a), _) -> indexed f k a <&> \v -> IntMap.updateMax (const v) m #endif Nothing -> pure m {-# INLINE traverseMax #-} instance Ord k => TraverseMax k (Map k) where traverseMax f m = case Map.maxViewWithKey m of Just ((k, a), _) -> indexed f k a <&> \v -> Map.updateMax (const (Just v)) m Nothing -> pure m {-# INLINE traverseMax #-} -- | Traverse the /nth/ element 'elementOf' a 'Traversal', 'Lens' or -- 'Iso' if it exists. -- -- >>> [[1],[3,4]] & elementOf (traverse.traverse) 1 .~ 5 -- [[1],[5,4]] -- -- >>> [[1],[3,4]] ^? elementOf (folded.folded) 1 -- Just 3 -- -- >>> timingOut $ ['a'..] ^?! elementOf folded 5 -- 'f' -- -- >>> timingOut $ take 10 $ elementOf traverse 3 .~ 16 $ [0..] -- [0,1,2,16,4,5,6,7,8,9] -- -- @ -- 'elementOf' :: 'Traversal'' s a -> 'Int' -> 'IndexedTraversal'' 'Int' s a -- 'elementOf' :: 'Fold' s a -> 'Int' -> 'IndexedFold' 'Int' s a -- @ elementOf :: Applicative f => LensLike (Indexing f) s t a a -> Int -> IndexedLensLike Int f s t a a elementOf l p = elementsOf l (p ==) {-# INLINE elementOf #-} -- | Traverse the /nth/ element of a 'Traversable' container. -- -- @ -- 'element' ≡ 'elementOf' 'traverse' -- @ element :: Traversable t => Int -> IndexedTraversal' Int (t a) a element = elementOf traverse {-# INLINE element #-} -- | Traverse (or fold) selected elements of a 'Traversal' (or 'Fold') where their ordinal positions match a predicate. -- -- @ -- 'elementsOf' :: 'Traversal'' s a -> ('Int' -> 'Bool') -> 'IndexedTraversal'' 'Int' s a -- 'elementsOf' :: 'Fold' s a -> ('Int' -> 'Bool') -> 'IndexedFold' 'Int' s a -- @ elementsOf :: Applicative f => LensLike (Indexing f) s t a a -> (Int -> Bool) -> IndexedLensLike Int f s t a a elementsOf l p iafb s = snd $ runIndexing (l (\a -> Indexing (\i -> i `seq` (i + 1, if p i then indexed iafb i a else pure a))) s) 0 {-# INLINE elementsOf #-} -- | Traverse elements of a 'Traversable' container where their ordinal positions matches a predicate. -- -- @ -- 'elements' ≡ 'elementsOf' 'traverse' -- @ elements :: Traversable t => (Int -> Bool) -> IndexedTraversal' Int (t a) a elements = elementsOf traverse {-# INLINE elements #-} -- | Try to map a function over this 'Traversal', failing if the 'Traversal' has no targets. -- -- >>> failover (element 3) (*2) [1,2] :: Maybe [Int] -- Nothing -- -- >>> failover _Left (*2) (Right 4) :: Maybe (Either Int Int) -- Nothing -- -- >>> failover _Right (*2) (Right 4) :: Maybe (Either Int Int) -- Just (Right 8) failover :: MonadPlus m => LensLike ((,) Any) s t a b -> (a -> b) -> s -> m t failover l f s = case l ((,) (Any True) . f) s of (Any True, t) -> return t (Any False, _) -> mzero {-# INLINE failover #-}