{-# LANGUAGE Rank2Types #-} {-# LANGUAGE FlexibleContexts #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Sequence.Lens -- Copyright : (C) 2012-13 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : experimental -- Portability : non-portable -- ---------------------------------------------------------------------------- module Data.Sequence.Lens ( viewL, viewR , sliced, slicedTo, slicedFrom ) where import Control.Applicative import Control.Lens import Data.Monoid import Data.Sequence as Seq -- $setup -- >>> import Debug.SimpleReflect.Expr -- >>> import Debug.SimpleReflect.Vars as Vars hiding (f,g) -- >>> let f :: Expr -> Expr; f = Debug.SimpleReflect.Vars.f -- >>> let g :: Expr -> Expr; g = Debug.SimpleReflect.Vars.g -- * Sequence isomorphisms -- | A 'Seq' is isomorphic to a 'ViewL' -- -- @'viewl' m ≡ m '^.' 'viewL'@ -- -- >>> Seq.fromList [a,b,c] ^. viewL -- a :< fromList [b,c] -- -- >>> Seq.empty ^. viewL -- EmptyL -- -- >>> EmptyL ^. from viewL -- fromList [] -- -- >>> review viewL $ a :< fromList [b,c] -- fromList [a,b,c] viewL :: Iso (Seq a) (Seq b) (ViewL a) (ViewL b) viewL = iso viewl $ \ xs -> case xs of EmptyL -> mempty a :< as -> a Seq.<| as {-# INLINE viewL #-} -- | A 'Seq' is isomorphic to a 'ViewR' -- -- @'viewr' m ≡ m '^.' 'viewR'@ -- -- >>> Seq.fromList [a,b,c] ^. viewR -- fromList [a,b] :> c -- -- >>> Seq.empty ^. viewR -- EmptyR -- -- >>> EmptyR ^. from viewR -- fromList [] -- -- >>> review viewR $ fromList [a,b] :> c -- fromList [a,b,c] viewR :: Iso (Seq a) (Seq b) (ViewR a) (ViewR b) viewR = iso viewr $ \xs -> case xs of EmptyR -> mempty as :> a -> as Seq.|> a {-# INLINE viewR #-} -- | Traverse the first @n@ elements of a 'Seq' -- -- >>> fromList [a,b,c,d,e] ^.. slicedTo 2 -- [a,b] -- -- >>> fromList [a,b,c,d,e] & slicedTo 2 %~ f -- fromList [f a,f b,c,d,e] -- -- >>> fromList [a,b,c,d,e] & slicedTo 10 .~ x -- fromList [x,x,x,x,x] slicedTo :: Int -> IndexedTraversal' Int (Seq a) a slicedTo n f m = case Seq.splitAt n m of (l,r) -> (>< r) <$> itraverse (indexed f) l {-# INLINE slicedTo #-} -- | Traverse all but the first @n@ elements of a 'Seq' -- -- >>> fromList [a,b,c,d,e] ^.. slicedFrom 2 -- [c,d,e] -- -- >>> fromList [a,b,c,d,e] & slicedFrom 2 %~ f -- fromList [a,b,f c,f d,f e] -- -- >>> fromList [a,b,c,d,e] & slicedFrom 10 .~ x -- fromList [a,b,c,d,e] slicedFrom :: Int -> IndexedTraversal' Int (Seq a) a slicedFrom n f m = case Seq.splitAt n m of (l,r) -> (l ><) <$> itraverse (indexed f . (+n)) r {-# INLINE slicedFrom #-} -- | Traverse all the elements numbered from @i@ to @j@ of a 'Seq' -- -- >>> fromList [a,b,c,d,e] & sliced 1 3 %~ f -- fromList [a,f b,f c,d,e] -- >>> fromList [a,b,c,d,e] ^.. sliced 1 3 -- [f b,f c] -- -- >>> fromList [a,b,c,d,e] & sliced 1 3 .~ x -- fromList [a,x,x,b,e] sliced :: Int -> Int -> IndexedTraversal' Int (Seq a) a sliced i j f s = case Seq.splitAt i s of (l,mr) -> case Seq.splitAt (j-i) mr of (m, r) -> itraverse (indexed f . (+i)) m <&> \n -> l >< n >< r {-# INLINE sliced #-}