{-# LANGUAGE CPP #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# OPTIONS_GHC -fno-warn-warnings-deprecations #-} #ifndef MIN_VERSION_mtl #define MIN_VERSION_mtl(x,y,z) 1 #endif #if __GLASGOW_HASKELL__ < 708 {-# LANGUAGE Trustworthy #-} #endif {-# LANGUAGE RankNTypes #-} ------------------------------------------------------------------------------- -- | -- Module : Control.Lens.Unsound -- Copyright : (C) 2012-16 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : Rank2Types -- -- One commonly asked question is: can we combine two lenses, -- @`Lens'` a b@ and @`Lens'` a c@ into @`Lens'` a (b, c)@. -- This is fair thing to ask, but such operation is unsound in general. -- See `lensProduct`. -- ------------------------------------------------------------------------------- module Control.Lens.Unsound ( lensProduct , prismSum ) where import Control.Applicative import Control.Lens import Prelude -- | A lens product. There is no law-abiding way to do this in general. -- Result is only a valid 'Lens' if the input lenses project disjoint parts of -- the structure @s@. Otherwise "you get what you put in" law -- -- @ -- 'Control.Lens.Getter.view' l ('Control.Lens.Setter.set' l v s) ≡ v -- @ -- -- is violated by -- -- >>> let badLens :: Lens' (Int, Char) (Int, Int); badLens = lensProduct _1 _1 -- >>> view badLens (set badLens (1,2) (3,'x')) -- (2,2) -- -- but we should get @(1,2)@. -- -- Are you looking for 'Control.Lens.Lens.alongside'? -- lensProduct :: ALens' s a -> ALens' s b -> Lens' s (a, b) lensProduct l1 l2 f s = f (s ^# l1, s ^# l2) <&> \(a, b) -> s & l1 #~ a & l2 #~ b -- | A dual of `lensProduct`: a prism sum. -- -- The law -- -- @ -- 'Control.Lens.Fold.preview' l ('Control.Lens.Review.review' l b) ≡ 'Just' b -- @ -- -- breaks with -- -- >>> let badPrism :: Prism' (Maybe Char) (Either Char Char); badPrism = prismSum _Just _Just -- >>> preview badPrism (review badPrism (Right 'x')) -- Just (Left 'x') -- -- We put in 'Right' value, but get back 'Left'. -- -- Are you looking for 'Control.Lens.Prism.without'? -- prismSum :: APrism s t a b -> APrism s t c d -> Prism s t (Either a c) (Either b d) prismSum k = withPrism k $ \bt seta k' -> withPrism k' $ \dt setb -> prism (either bt dt) $ \s -> f (Left <$> seta s) (Right <$> setb s) where f a@(Right _) _ = a f (Left _) b = b