#if __GLASGOW_HASKELL__ >= 707
#endif
#if __GLASGOW_HASKELL__ >= 707
#define USE_TYPE_LITS 1
#endif
#ifndef MIN_VERSION_reflection
#define MIN_VERSION_reflection(x,y,z) 1
#endif
#ifndef MIN_VERSION_transformers
#define MIN_VERSION_transformers(x,y,z) 1
#endif
module Linear.V
( V(V,toVector)
#ifdef MIN_VERSION_template_haskell
, int
#endif
, dim
, Dim(..)
, reifyDim
, reifyVector
#if (MIN_VERSION_reflection(2,0,0)) && __GLASGOW_HASKELL__ >= 708
, reifyDimNat
, reifyVectorNat
#endif
, fromVector
#if __GLASGOW_HASKELL__ >= 707
, Finite(..)
, _V, _V'
#endif
) where
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative
#endif
import Control.DeepSeq (NFData)
import Control.Monad
import Control.Monad.Fix
import Control.Monad.Zip
import Control.Lens as Lens
import Data.Binary as Binary
import Data.Bytes.Serial
#if __GLASGOW_HASKELL__ >= 707
import Data.Complex
#endif
import Data.Data
import Data.Distributive
import Data.Foldable as Foldable
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Functor.Rep as Rep
#if __GLASGOW_HASKELL__ < 708
import Data.Proxy
#endif
import Data.Reflection as R
import Data.Serialize as Cereal
#if __GLASGOW_HASKELL__ < 710
import Data.Traversable (sequenceA)
#endif
import Data.Vector as V
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Generic.Mutable as M
import Foreign.Ptr
import Foreign.Storable
#ifdef USE_TYPE_LITS
import GHC.TypeLits
#endif
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic)
#endif
#if __GLASGOW_HASKELL__ >= 707
import GHC.Generics (Generic1)
#endif
#if !(MIN_VERSION_reflection(1,3,0)) && defined(MIN_VERSION_template_haskell)
import Language.Haskell.TH
#endif
import Linear.Epsilon
import Linear.Metric
import Linear.Vector
#if (MIN_VERSION_transformers(0,5,0)) || !(MIN_VERSION_transformers(0,4,0))
import Prelude as P
#if __GLASGOW_HASKELL__ < 710
import Data.Monoid
#endif
#endif
#ifdef HLINT
#endif
class Dim n where
reflectDim :: p n -> Int
#if __GLASGOW_HASKELL__ >= 707
type role V nominal representational
class Finite v where
type Size (v :: * -> *) :: Nat
toV :: v a -> V (Size v) a
default toV :: Foldable v => v a -> V (Size v) a
toV = V . V.fromList . Foldable.toList
fromV :: V (Size v) a -> v a
instance Finite Complex where
type Size Complex = 2
toV (a :+ b) = V (V.fromListN 2 [a, b])
fromV (V v) = (v V.! 0) :+ (v V.! 1)
_V :: (Finite u, Finite v) => Iso (V (Size u) a) (V (Size v) b) (u a) (v b)
_V = iso fromV toV
_V' :: Finite v => Iso (V (Size v) a) (V (Size v) b) (v a) (v b)
_V' = iso fromV toV
instance Finite (V (n :: Nat)) where
type Size (V n) = n
toV = id
fromV = id
#endif
newtype V n a = V { toVector :: V.Vector a } deriving (Eq,Ord,Show,Read,Typeable,NFData
, Generic
#if __GLASGOW_HASKELL__ >= 707
,Generic1
#endif
)
dim :: forall n a. Dim n => V n a -> Int
dim _ = reflectDim (Proxy :: Proxy n)
#ifdef USE_TYPE_LITS
instance KnownNat n => Dim (n :: Nat) where
reflectDim = fromInteger . natVal
#endif
data ReifiedDim (s :: *)
retagDim :: (Proxy s -> a) -> proxy (ReifiedDim s) -> a
retagDim f _ = f Proxy
instance Reifies s Int => Dim (ReifiedDim s) where
reflectDim = retagDim reflect
#if (MIN_VERSION_reflection(2,0,0)) && __GLASGOW_HASKELL__ >= 708
reifyDimNat :: Int -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyDimNat i f = R.reifyNat (fromIntegral i) f
reifyVectorNat :: forall a r. Vector a -> (forall (n :: Nat). KnownNat n => V n a -> r) -> r
reifyVectorNat v f = reifyNat (fromIntegral $ V.length v) $ \(Proxy :: Proxy n) -> f (V v :: V n a)
#endif
reifyDim :: Int -> (forall (n :: *). Dim n => Proxy n -> r) -> r
reifyDim i f = R.reify i (go f) where
go :: (Proxy (ReifiedDim n) -> a) -> proxy n -> a
go g _ = g Proxy
reifyVector :: forall a r. Vector a -> (forall (n :: *). Dim n => V n a -> r) -> r
reifyVector v f = reifyDim (V.length v) $ \(Proxy :: Proxy n) -> f (V v :: V n a)
instance Dim n => Dim (V n a) where
reflectDim _ = reflectDim (Proxy :: Proxy n)
instance Functor (V n) where
fmap f (V as) = V (fmap f as)
instance FunctorWithIndex Int (V n) where
imap f (V as) = V (Lens.imap f as)
instance Foldable (V n) where
fold (V as) = fold as
foldMap f (V as) = foldMap f as
foldr f z (V as) = V.foldr f z as
foldl f z (V as) = V.foldl f z as
#if __GLASGOW_HASKELL__ >= 706
foldr' f z (V as) = V.foldr' f z as
foldl' f z (V as) = V.foldl' f z as
#endif
foldr1 f (V as) = V.foldr1 f as
foldl1 f (V as) = V.foldl1 f as
#if __GLASGOW_HASKELL__ >= 710
length (V as) = V.length as
null (V as) = V.null as
toList (V as) = V.toList as
elem a (V as) = V.elem a as
maximum (V as) = V.maximum as
minimum (V as) = V.minimum as
sum (V as) = V.sum as
product (V as) = V.product as
#endif
instance FoldableWithIndex Int (V n) where
ifoldMap f (V as) = ifoldMap f as
instance Traversable (V n) where
traverse f (V as) = V <$> traverse f as
instance TraversableWithIndex Int (V n) where
itraverse f (V as) = V <$> itraverse f as
instance Apply (V n) where
V as <.> V bs = V (V.zipWith id as bs)
instance Dim n => Applicative (V n) where
pure = V . V.replicate (reflectDim (Proxy :: Proxy n))
V as <*> V bs = V (V.zipWith id as bs)
instance Bind (V n) where
V as >>- f = V $ generate (V.length as) $ \i ->
toVector (f (as `unsafeIndex` i)) `unsafeIndex` i
instance Dim n => Monad (V n) where
return = V . V.replicate (reflectDim (Proxy :: Proxy n))
V as >>= f = V $ generate (reflectDim (Proxy :: Proxy n)) $ \i ->
toVector (f (as `unsafeIndex` i)) `unsafeIndex` i
instance Dim n => Additive (V n) where
zero = pure 0
liftU2 f (V as) (V bs) = V (V.zipWith f as bs)
liftI2 f (V as) (V bs) = V (V.zipWith f as bs)
instance (Dim n, Num a) => Num (V n a) where
V as + V bs = V $ V.zipWith (+) as bs
V as V bs = V $ V.zipWith () as bs
V as * V bs = V $ V.zipWith (*) as bs
negate = fmap negate
abs = fmap abs
signum = fmap signum
fromInteger = pure . fromInteger
instance (Dim n, Fractional a) => Fractional (V n a) where
recip = fmap recip
V as / V bs = V $ V.zipWith (/) as bs
fromRational = pure . fromRational
instance (Dim n, Floating a) => Floating (V n a) where
pi = pure pi
exp = fmap exp
sqrt = fmap sqrt
log = fmap log
V as ** V bs = V $ V.zipWith (**) as bs
logBase (V as) (V bs) = V $ V.zipWith logBase as bs
sin = fmap sin
tan = fmap tan
cos = fmap cos
asin = fmap asin
atan = fmap atan
acos = fmap acos
sinh = fmap sinh
tanh = fmap tanh
cosh = fmap cosh
asinh = fmap asinh
atanh = fmap atanh
acosh = fmap acosh
instance Dim n => Distributive (V n) where
distribute f = V $ V.generate (reflectDim (Proxy :: Proxy n)) $ \i -> fmap (\(V v) -> unsafeIndex v i) f
instance (Dim n, Storable a) => Storable (V n a) where
sizeOf _ = reflectDim (Proxy :: Proxy n) * sizeOf (undefined:: a)
alignment _ = alignment (undefined :: a)
poke ptr (V xs) = Foldable.forM_ [0..reflectDim (Proxy :: Proxy n)1] $ \i ->
pokeElemOff ptr' i (unsafeIndex xs i)
where ptr' = castPtr ptr
peek ptr = V <$> generateM (reflectDim (Proxy :: Proxy n)) (peekElemOff ptr')
where ptr' = castPtr ptr
instance (Dim n, Epsilon a) => Epsilon (V n a) where
nearZero = nearZero . quadrance
instance Dim n => Metric (V n) where
dot (V a) (V b) = V.sum $ V.zipWith (*) a b
fromVector :: forall n a. Dim n => Vector a -> Maybe (V n a)
fromVector v
| V.length v == reflectDim (Proxy :: Proxy n) = Just (V v)
| otherwise = Nothing
#if !(MIN_VERSION_reflection(1,3,0)) && defined(MIN_VERSION_template_haskell)
data Z
data D (n :: *)
data SD (n :: *)
data PD (n :: *)
instance Reifies Z Int where
reflect _ = 0
retagD :: (Proxy n -> a) -> proxy (D n) -> a
retagD f _ = f Proxy
retagSD :: (Proxy n -> a) -> proxy (SD n) -> a
retagSD f _ = f Proxy
retagPD :: (Proxy n -> a) -> proxy (PD n) -> a
retagPD f _ = f Proxy
instance Reifies n Int => Reifies (D n) Int where
reflect = (\n -> n+n) <$> retagD reflect
instance Reifies n Int => Reifies (SD n) Int where
reflect = (\n -> n+n+1) <$> retagSD reflect
instance Reifies n Int => Reifies (PD n) Int where
reflect = (\n -> n+n1) <$> retagPD reflect
int :: Int -> TypeQ
int n = case quotRem n 2 of
(0, 0) -> conT ''Z
(q,1) -> conT ''PD `appT` int q
(q, 0) -> conT ''D `appT` int q
(q, 1) -> conT ''SD `appT` int q
_ -> error "ghc is bad at math"
#endif
instance Dim n => Representable (V n) where
type Rep (V n) = Int
tabulate = V . generate (reflectDim (Proxy :: Proxy n))
index (V xs) i = xs V.! i
type instance Index (V n a) = Int
type instance IxValue (V n a) = a
instance Ixed (V n a) where
ix i f (V as)
| i < 0 || i >= V.length as = pure $ V as
| otherwise = f (as ! i) <&> \a -> V $ as V.// [(i, a)]
instance Dim n => MonadZip (V n) where
mzip (V as) (V bs) = V $ V.zip as bs
mzipWith f (V as) (V bs) = V $ V.zipWith f as bs
instance Dim n => MonadFix (V n) where
mfix f = tabulate $ \r -> let a = Rep.index (f a) r in a
instance Each (V n a) (V n b) a b where
each = traverse
instance (Bounded a, Dim n) => Bounded (V n a) where
minBound = pure minBound
maxBound = pure maxBound
vConstr :: Constr
vConstr = mkConstr vDataType "variadic" [] Prefix
vDataType :: DataType
vDataType = mkDataType "Linear.V.V" [vConstr]
#if __GLASGOW_HASKELL__ >= 708
#define Typeable1 Typeable
#endif
instance (Typeable1 (V n), Typeable (V n a), Dim n, Data a) => Data (V n a) where
gfoldl f z (V as) = z (V . fromList) `f` V.toList as
toConstr _ = vConstr
gunfold k z c = case constrIndex c of
1 -> k (z (V . fromList))
_ -> error "gunfold"
dataTypeOf _ = vDataType
dataCast1 f = gcast1 f
instance Dim n => Serial1 (V n) where
serializeWith = traverse_
deserializeWith f = sequenceA $ pure f
instance (Dim n, Serial a) => Serial (V n a) where
serialize = traverse_ serialize
deserialize = sequenceA $ pure deserialize
instance (Dim n, Binary a) => Binary (V n a) where
put = serializeWith Binary.put
get = deserializeWith Binary.get
instance (Dim n, Serialize a) => Serialize (V n a) where
put = serializeWith Cereal.put
get = deserializeWith Cereal.get
#if (MIN_VERSION_transformers(0,5,0)) || !(MIN_VERSION_transformers(0,4,0))
instance Eq1 (V n) where
liftEq f0 (V as0) (V bs0) = go f0 (V.toList as0) (V.toList bs0) where
go _ [] [] = True
go f (a:as) (b:bs) = f a b && go f as bs
go _ _ _ = False
instance Ord1 (V n) where
liftCompare f0 (V as0) (V bs0) = go f0 (V.toList as0) (V.toList bs0) where
go f (a:as) (b:bs) = f a b `mappend` go f as bs
go _ [] [] = EQ
go _ _ [] = GT
go _ [] _ = LT
instance Show1 (V n) where
liftShowsPrec _ g d (V as) = showParen (d > 10) $ showString "V " . g (V.toList as)
instance Dim n => Read1 (V n) where
liftReadsPrec _ g d = readParen (d > 10) $ \r ->
[ (V (V.fromList as), r2)
| ("V",r1) <- lex r
, (as, r2) <- g r1
, P.length as == reflectDim (Proxy :: Proxy n)
]
#else
instance Dim n => Eq1 (V n) where eq1 = (==)
instance Dim n => Ord1 (V n) where compare1 = compare
instance Dim n => Show1 (V n) where showsPrec1 = showsPrec
instance Dim n => Read1 (V n) where readsPrec1 = readsPrec
#endif
data instance U.Vector (V n a) = V_VN !Int !(U.Vector a)
data instance U.MVector s (V n a) = MV_VN !Int !(U.MVector s a)
instance (Dim n, U.Unbox a) => U.Unbox (V n a)
instance (Dim n, U.Unbox a) => M.MVector U.MVector (V n a) where
basicLength (MV_VN n _) = n
basicUnsafeSlice m n (MV_VN _ v) = MV_VN n (M.basicUnsafeSlice (d*m) (d*n) v)
where d = reflectDim (Proxy :: Proxy n)
basicOverlaps (MV_VN _ v) (MV_VN _ u) = M.basicOverlaps v u
basicUnsafeNew n = liftM (MV_VN n) (M.basicUnsafeNew (d*n))
where d = reflectDim (Proxy :: Proxy n)
basicUnsafeRead (MV_VN _ v) i =
liftM V $ V.generateM d (\j -> M.basicUnsafeRead v (d*i+j))
where d = reflectDim (Proxy :: Proxy n)
basicUnsafeWrite (MV_VN _ v0) i (V vn0) = let d0 = V.length vn0 in go v0 vn0 d0 (d0*i) 0
where
go v vn d o j
| j >= d = return ()
| otherwise = do
a <- G.basicUnsafeIndexM vn j
M.basicUnsafeWrite v o a
go v vn d (o+1) (j+1)
#if MIN_VERSION_vector(0,11,0)
basicInitialize (MV_VN _ v) = M.basicInitialize v
#endif
instance (Dim n, U.Unbox a) => G.Vector U.Vector (V n a) where
basicUnsafeFreeze (MV_VN n v) = liftM ( V_VN n) (G.basicUnsafeFreeze v)
basicUnsafeThaw ( V_VN n v) = liftM (MV_VN n) (G.basicUnsafeThaw v)
basicLength ( V_VN n _) = n
basicUnsafeSlice m n (V_VN _ v) = V_VN n (G.basicUnsafeSlice (d*m) (d*n) v)
where d = reflectDim (Proxy :: Proxy n)
basicUnsafeIndexM (V_VN _ v) i =
liftM V $ V.generateM d (\j -> G.basicUnsafeIndexM v (d*i+j))
where d = reflectDim (Proxy :: Proxy n)