{-@ LIQUID "--no-termination" @-} {-@ LIQUID "--short-names" @-} module KMP (search) where import Language.Haskell.Liquid.Prelude (liquidError) import qualified Data.Map as M search pat str = kmpSearch (ofList pat) (ofList str) ------------------------------------------------------------- -- | Do the Search ------------------------------------------ ------------------------------------------------------------- {-@ type Upto N = {v:Nat | v < N} @-} {-@ kmpSearch :: (Eq a) => p:Arr a -> s:Arr a -> Maybe (Upto (alen s)) @-} kmpSearch p@(A m _) s@(A n _) = go 0 0 where t = kmpTable p go i j | i >= n = Nothing | j >= m = Just (i - m) | s!i == p!j = go (i+1) (j+1) | j == 0 = go (i+1) j | otherwise = go i (t!j) ------------------------------------------------------------- -- | Make Table --------------------------------------------- ------------------------------------------------------------- kmpTable p@(A m _) = go t 1 0 where t = new m (\_ -> 0) go t i j | i >= m - 1 = t | p!i == p!j = let i' = i + 1 j' = j + 1 t' = set t i' j' in go t' i' j' | (j == 0) = let i' = i + 1 t' = set t i' 0 in go t' i' j | otherwise = let j' = t ! j in go t i j' ------------------------------------------------------------- -- | A Pure Array ------------------------------------------- ------------------------------------------------------------- data Arr a = A { alen :: Int , aval :: Int -> a } {-@ data Arr a
a -> Prop> = A { alen :: Nat , aval :: i:Upto alen -> a
} @-} {-@ new :: forall
a -> Prop>. n:Nat -> (i:Upto n -> a
) -> {v: Arr
a | alen v = n} @-} new n v = A n v {-@ (!) :: forall
a -> Prop>. a:Arr
a -> i:Upto (alen a) -> a
@-} (A _ f) ! i = f i {-@ set :: forall
a -> Prop>. a:Arr
a -> i:Upto (alen a) -> a
-> {v:Arr
a | alen v = alen a} @-} set a@(A _ f) i v = a { aval = \j -> if (i == j) then v else f j } {-@ ofList :: xs:[a] -> {v:Arr a | alen v = len xs} @-} ofList xs = new n f where n = length xs m = M.fromList $ zip [0..] xs f i = (M.!) m i {-@ map :: (a -> b) -> a:Arr a -> {v:Arr b | alen v = alen a} @-} map f a@(A n z) = A n (f . z)