module ListMem where import Data.Set hiding (partition) {-@ member' :: Eq a => x:a -> xs:[a] -> {v:([{vv:a|vv=x}], [{vv:a|vv!=x}]) | (PairEqElts xs v)} @-} member' :: Eq a => a -> [a] -> ([a], [a]) member' x ls = partition (cmp x) ls {-@ member :: Eq a => x:a -> xs:[a] -> {v:Bool|((Prop v) <=> (ListElt x xs))} @-} member :: Eq a => a -> [a] -> Bool member x ls = case partition (cmp x) ls of ([], _) -> False -- can not prove this! (_, _) -> True {-@ predicate ListElt N LS = (Set_mem N (listElts LS)) @-} {-@ predicate PairEqElts X P = ((listElts X) = (Set_cup (listElts (getFst P)) (listElts (getSnd P)))) @-} {-@ predicate UnionElts X Y Z W = ((listElts X) = (Set_cup (listElts Y) (Set_cup (listElts Z) (listElts W)))) @-} {-@ measure getFst :: (a, b) -> a getFst(a, b) = a @-} {-@ measure getSnd :: (a, b) -> b getSnd(a, b) = b @-} {-@ cmp :: Eq a => x:a -> y:a -> Either {v:a| ((v = y) && (v = x))} {v:a| ((v != x) && (v = y))} @-} cmp :: Eq a => a -> a -> Either a a cmp x y | x == y = Left y | otherwise = Right y {-@ partition :: forall
Prop, q :: a -> Prop>. (x:a -> Either {v:a
|v = x} {v:a ], [a Prop, q :: a -> Prop>.
(x:a -> Either {v:a |v = x} {v:a ], [a ], [a|v=x})
-> xs:[a]
-> {v:([a
]) | (PairEqElts xs v) }
@-}
partition :: (a -> Either a a) -> [a] -> ([a], [a])
partition f xs = partition' f xs xs ([], [])
{-@ partition' :: forall
|v=x})
-> init:[a]
-> xs:[a]
-> ack:{v:([a
]) | ((listElts init) = (Set_cup (listElts xs) (Set_cup (listElts (getFst v)) (listElts (getSnd v))))) }
-> {v:([a
]) | (listElts init) = (Set_cup (listElts (getFst v)) (listElts (getSnd v)))}
@-}
partition' :: (a -> Either a a) -> [a] -> [a] -> ([a], [a]) -> ([a], [a])
partition' _ a [] (x, y) = (x, y)
partition' f a (x:xs) (pos, neg)
= case f x of
Left _ -> partition' f a xs (x:pos, neg)
Right _ -> partition' f a xs (pos, x:neg)