mighty-metropolis: The Metropolis algorithm.

[ library, mit, numeric ] [ Propose Tags ] [ Report a vulnerability ]

The classic Metropolis algorithm.

Wander around parameter space according to a simple spherical Gaussian distribution.

Exports a mcmc function that prints a trace to stdout, a chain function for collecting results in-memory, and a metropolis transition operator that can be used more generally.

import Numeric.MCMC.Metropolis

rosenbrock :: [Double] -> Double
rosenbrock [x0, x1] = negate (5  *(x1 - x0 ^ 2) ^ 2 + 0.05 * (1 - x0) ^ 2)

main :: IO ()
main = withSystemRandom . asGenIO $ mcmc 10000 1 [0, 0] rosenbrock

Downloads

Note: This package has metadata revisions in the cabal description newer than included in the tarball. To unpack the package including the revisions, use 'cabal get'.

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

  • No Candidates
Versions [RSS] 1.0.0, 1.0.1, 1.0.2, 1.0.3, 1.0.4, 1.1.0, 1.2.0, 2.0.0
Dependencies base (>=4 && <6), kan-extensions (>=5 && <6), mcmc-types (>=1.0.1), mwc-probability (>=1.0.1), pipes (>=4 && <5), primitive (>=0.6 && <1.0), transformers (>=0.5 && <1.0) [details]
Tested with ghc ==8.2.2, ghc ==8.8.3
License MIT
Author Jared Tobin
Maintainer jared@jtobin.ca
Revised Revision 1 made by JaredTobin at 2024-11-09T07:40:05Z
Category Numeric
Home page http://github.com/jtobin/mighty-metropolis
Source repo head: git clone http://github.com/jtobin/mighty-metropolis.git
Uploaded by JaredTobin at 2020-05-21T17:22:32Z
Distributions LTSHaskell:2.0.0, NixOS:2.0.0, Stackage:2.0.0
Reverse Dependencies 1 direct, 1 indirect [details]
Downloads 5481 total (28 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2020-05-21 [all 1 reports]