Package maintainers and Hackage trustees are allowed to edit certain bits
of package metadata after a release, without uploading a new tarball.
Note that the tarball itself is never changed, just the metadata that is
stored separately. For more information about metadata revisions, please
refer to the
Hackage Metadata Revisions FAQ.
No. |
Time |
User |
SHA256 |
-r2 (newsynth-0.2-r2) |
2014-10-06T16:12:21Z |
PeterSelinger |
e4dc60779a14f470d4b21df051d0f855016a5fb9cefc7fb2aa9e1e7c5d990c24
|
|
Changed description
from A library of algorithms for exact and approximate synthesis of
quantum circuits over the Clifford+T gate set. This includes, among
other things:
* "Quantum.Synthesis.GridSynth": an efficient single-qubit
approximate synthesis algorithm. From N. J. Ross and P. Selinger,
\"Optimal ancilla-free Clifford+/T/ approximation of
/z/-rotations\", <http://arxiv.org/abs/1403.2975>.
* "Quantum.Synthesis.MultiQubitSynthesis": multi-qubit exact
synthesis algorithms. From B. Giles and P. Selinger, \"Exact
synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
* "Quantum.Synthesis.CliffordT": the computation of
Matsumoto-Amano normal forms. From K. Matsumoto and K. Amano,
\"Representation of Quantum Circuits with Clifford and Ï\/8
Gates\", <http://arxiv.org/abs/0806.3834>.
* "Quantum.Synthesis.RotationDecomposition": an algorithm for
decomposing multi-qubit unitary operators into one- and two-level
unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
I. L. Chuang, \"Quantum Computation and Quantum Information\",
Cambridge University Press, 2002.
This package also provides an easy-to-use command line tool for
single-qubit approximate synthesis.
to A library of algorithms for exact and approximate synthesis of
quantum circuits over the Clifford+T gate set. This includes, among
other things:
* "Quantum.Synthesis.GridSynth": an efficient single-qubit
approximate synthesis algorithm. From N. J. Ross and P. Selinger,
\"Optimal ancilla-free Clifford+/T/ approximation of
/z/-rotations\", <http://arxiv.org/abs/1403.2975>.
* "Quantum.Synthesis.MultiQubitSynthesis": multi-qubit exact
synthesis algorithms. From B. Giles and P. Selinger, \"Exact
synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
* "Quantum.Synthesis.CliffordT": the computation of
Matsumoto-Amano normal forms. From K. Matsumoto and K. Amano,
\"Representation of Quantum Circuits with Clifford and π\/8
Gates\", <http://arxiv.org/abs/0806.3834>.
* "Quantum.Synthesis.RotationDecomposition": an algorithm for
decomposing multi-qubit unitary operators into one- and two-level
unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
I. L. Chuang, \"Quantum Computation and Quantum Information\",
Cambridge University Press, 2002.
This package also provides an easy-to-use command line tool for
single-qubit approximate synthesis.
|
-r1 (newsynth-0.2-r1) |
2014-10-06T16:10:18Z |
PeterSelinger |
ad6eb2e28bc92bbc32560bdda3946f0b442de8b10b3f5120c38056d09dd59253
|
|
Changed description
from A library of algorithms for exact and approximate synthesis of
quantum circuits over the Clifford+T gate set. This includes, among
other things:
* "Quantum.Synthesis.GridSynth": an efficient single-qubit
approximate synthesis algorithm. From N. J. Ross and P. Selinger,
\"Optimal ancilla-free Clifford+/T/ approximation of
/z/-rotations\", <http://arxiv.org/abs/1403.2975>.
* "Quantum.Synthesis.MultiQubitSynthesis": multi-qubit exact
synthesis algorithms. From B. Giles and P. Selinger, \"Exact
synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
* "Quantum.Synthesis.CliffordT": the computation of
Matsumoto-Amano normal forms. From K. Matsumoto and K. Amano,
\"Representation of Quantum Circuits with Clifford and π\/8
Gates\", <http://arxiv.org/abs/0806.3834>.
* "Quantum.Synthesis.RotationDecomposition": an algorithm for
decomposing multi-qubit unitary operators into one- and two-level
unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
I. L. Chuang, \"Quantum Computation and Quantum Information\",
Cambridge University Press, 2002.
This package also provides an easy-to-use command line tool for
single-qubit approximate synthesis.
to A library of algorithms for exact and approximate synthesis of
quantum circuits over the Clifford+T gate set. This includes, among
other things:
* "Quantum.Synthesis.GridSynth": an efficient single-qubit
approximate synthesis algorithm. From N. J. Ross and P. Selinger,
\"Optimal ancilla-free Clifford+/T/ approximation of
/z/-rotations\", <http://arxiv.org/abs/1403.2975>.
* "Quantum.Synthesis.MultiQubitSynthesis": multi-qubit exact
synthesis algorithms. From B. Giles and P. Selinger, \"Exact
synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
* "Quantum.Synthesis.CliffordT": the computation of
Matsumoto-Amano normal forms. From K. Matsumoto and K. Amano,
\"Representation of Quantum Circuits with Clifford and Ï\/8
Gates\", <http://arxiv.org/abs/0806.3834>.
* "Quantum.Synthesis.RotationDecomposition": an algorithm for
decomposing multi-qubit unitary operators into one- and two-level
unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
I. L. Chuang, \"Quantum Computation and Quantum Information\",
Cambridge University Press, 2002.
This package also provides an easy-to-use command line tool for
single-qubit approximate synthesis.
|
-r0 (newsynth-0.2-r0) |
2014-03-13T00:20:10Z |
PeterSelinger |
658dcae2c3f6d9b2fe27ecc1232f3298fbe0ee183cd92912306ac5c58ffeb22b
|
|
|