module Quantum.Synthesis.GridSynth where
import Quantum.Synthesis.Ring
import Quantum.Synthesis.Ring.FixedPrec()
import Quantum.Synthesis.Matrix
import Quantum.Synthesis.CliffordT
import Quantum.Synthesis.SymReal
import Quantum.Synthesis.GridProblems
import Quantum.Synthesis.Diophantine
import Quantum.Synthesis.StepComp
import Quantum.Synthesis.QuadraticEquation
import System.Random
import Data.Function
gridsynth :: (RandomGen g) => g -> Double -> SymReal -> Int -> U2 DOmega
gridsynth g prec theta effort = m where
(m, _, _) = gridsynth_stats g prec theta effort
gridsynth_gates :: (RandomGen g) => g -> Double -> SymReal -> Int -> [Gate]
gridsynth_gates g prec theta effort = synthesis_u2 (gridsynth g prec theta effort)
data DStatus = Success | Fail | Timeout
deriving (Eq, Show)
gridsynth_stats :: (RandomGen g) => g -> Double -> SymReal -> Int -> (U2 DOmega, Maybe Double, [(DOmega, Integer, DStatus)])
gridsynth_stats g prec theta effort = dynamic_fixedprec2 digits f prec theta where
digits = ceiling (15 + 2.5 * prec * logBase 10 2)
f prec theta = gridsynth_internal g prec theta effort
gridsynth_phase_stats :: (RandomGen g) => g -> Double -> SymReal -> Int -> (U2 DOmega, Maybe Double, [(DOmega, Integer, DStatus)])
gridsynth_phase_stats g prec theta effort = dynamic_fixedprec2 digits f prec theta where
digits = ceiling (15 + 2.5 * prec * logBase 10 2)
f prec theta = gridsynth_phase_internal g prec theta effort
epsilon_region :: (Floating r, Ord r, RootHalfRing r, Quadratic QRootTwo r) => r -> r -> ConvexSet r
epsilon_region epsilon theta = ConvexSet ell tst int where
ell = Ellipse mat ctr
ctr = (d*zx, d*zy)
mat = bmat * mmat * special_inverse bmat
mmat = toOperator ((ev1, 0), (0, ev2))
bmat = toOperator ((zx, zy), (zy, zx))
ev1 = 4 * (1 / epsilon)^4
ev2 = (1 / epsilon)^2
int p v
| q == Nothing = Nothing
| vz == 0 && rhs <= 0 = Just (t0, t1)
| vz == 0 && otherwise = Nothing
| vz > 0 = Just (max t0 t2, t1)
| otherwise = Just (t0, min t1 t2)
where
a = iprod v v
b = 2 * iprod v p
c = iprod p p 1
q = quadratic (fromDRootTwo a :: QRootTwo) (fromDRootTwo b) (fromDRootTwo c)
Just (t0, t1) = q
vz = iprod (point_fromDRootTwo v) z
rhs = d iprod (point_fromDRootTwo p) z
t2 = rhs / vz
tst (x,y) = x^2 + y^2 <= 1 && zx * fromDRootTwo x + zy * fromDRootTwo y >= d
zx = cos (theta/2)
zy = sin (theta/2)
d = 1 epsilon^2/2
z = (zx, zy)
epsilon_region_scaled :: (Floating r, Ord r, RootHalfRing r, Quadratic QRootTwo r) => DRootTwo -> r -> r -> ConvexSet r
epsilon_region_scaled s epsilon theta = ConvexSet ell tst int where
ell = Ellipse mat ctr
ctr = (rd*zx, rd*zy)
mat = bmat * mmat * special_inverse bmat
mmat = toOperator ((ev1, 0), (0, ev2))
bmat = toOperator ((zx, zy), (zy, zx))
ev1 = 4 * (1 / epsilon)^4 / fromDRootTwo s
ev2 = (1 / epsilon)^2 / fromDRootTwo s
int p v
| q == Nothing = Nothing
| vz == 0 && rhs <= 0 = Just (t0, t1)
| vz == 0 && otherwise = Nothing
| vz > 0 = Just (max t0 t2, t1)
| otherwise = Just (t0, min t1 t2)
where
a = iprod v v
b = 2 * iprod v p
c = iprod p p s
q = quadratic (fromDRootTwo a :: QRootTwo) (fromDRootTwo b) (fromDRootTwo c)
Just (t0, t1) = q
vz = iprod (point_fromDRootTwo v) z
rhs = rd iprod (point_fromDRootTwo p) z
t2 = rhs / vz
tst (x, y) = x^2 + y^2 <= s && zx * fromDRootTwo x + zy * fromDRootTwo y >= rd
zx = cos (theta/2)
zy = sin (theta/2)
rd = (1 epsilon^2/2) * sqrt (fromDRootTwo s)
z = (zx, zy)
gridsynth_internal :: forall r g.(RootHalfRing r, Ord r, Floating r, Adjoint r, Floor r, RealFrac r, Quadratic QRootTwo r, RandomGen g) => g -> r -> r -> Int -> (U2 DOmega, Maybe Double, [(DOmega, Integer, DStatus)])
gridsynth_internal g prec theta effort = (uU, log_err, candidate_info) where
epsilon = 2 ** (prec)
region = epsilon_region epsilon theta
raw_candidates = gridpoints2_increasing region unitdisk
candidates = [ (u, t) | (k, us) <- raw_candidates,
let t = tcount k,
u <- us ]
(uU, log_err, candidate_info) = first_solvable [] g candidates
tcount k = if k > 0 then 2*k 2 else 0
first_solvable candidate_info g [] = error "gridsynth: internal error: finite list of candidates?"
first_solvable candidate_info g ((u, tcount) : us) = case answer_t of
Just (Just t) -> let (uU, log_err) = with_successful_candidate u t in (uU, log_err, ((u, tcount, Success) : candidate_info))
Just Nothing -> first_solvable ((u, tcount, Fail) : candidate_info) g2 us
Nothing -> first_solvable ((u, tcount, Timeout) : candidate_info) g2 us
where
(g1, g2) = split g
xi = real (1 adj u * u)
answer_t = run_bounded effort $ diophantine_dyadic g1 xi
with_successful_candidate u t = (uU, log_err) where
uU | denomexp (u + t) < denomexp (u + omega * t)
= matrix2x2 (u, (adj t)) (t, adj u)
| otherwise
= matrix2x2 (u, (adj (omega*t))) (omega*t, adj u)
log_err
| err <= 0 = Nothing
| otherwise = Just (logBase_double 0.5 err)
err = sqrt (real (hs_sqnorm (uU_fixed zrot_fixed)) / 2)
uU_fixed = matrix_map fromDOmega uU
zrot_fixed = zrot (theta :: r)
data Phase = Phase0 | Phase1
gridsynth_phase_internal :: forall r g.(RootHalfRing r, Ord r, Floating r, Adjoint r, Floor r, RealFrac r, Quadratic QRootTwo r, Quadratic r r, RandomGen g) => g -> r -> r -> Int -> (U2 DOmega, Maybe Double, [(DOmega, Integer, DStatus)])
gridsynth_phase_internal g prec theta effort = (uU, log_err, candidate_info) where
epsilon = 2 ** (prec)
region0 = epsilon_region epsilon theta
disk0 = unitdisk
region1 = epsilon_region_scaled (2 + roottwo) epsilon theta
disk1 = disk (2 roottwo)
opG = to_upright_sets region0 disk0
raw_candidates0 = gridpoints2_increasing_with_gridop region0 disk0 opG
raw_candidates1 = gridpoints2_increasing_with_gridop region1 disk1 opG
candidates0 = [ (t, Phase0, us) | (k, us) <- raw_candidates0,
let t = tcount k ]
candidates1 = [ (t, Phase1, us') | (k, us) <- raw_candidates1,
let t = 1 + tcount k,
let us' = [ u * delta_inv | u <- us ] ]
merged = mergeBy (compare `on` first) candidates0 candidates1
candidates = [ (t, ph, u) | (t, ph, us) <- merged, u <- us ]
(uU, log_err, candidate_info) = first_solvable [] g candidates
fabs (Cplx a b) = sqrt(a^2 + b^2)
tcount k = if k > 0 then 2*k 2 else 0
first_solvable candidate_info g [] = error "gridsynth: internal error: finite list of candidates?"
first_solvable candidate_info g ((tcount, phase, u) : us) = case answer_t of
Just (Just t) ->
let (uU, log_err) = with_successful_candidate u t phase in
(uU, log_err, ((u, tcount, Success) : candidate_info))
Just Nothing -> first_solvable ((u, tcount, Fail) : candidate_info) g2 us
Nothing -> first_solvable ((u, tcount, Timeout) : candidate_info) g2 us
where
(g1, g2) = split g
xi = real (1 adj u * u)
answer_t = run_bounded effort $ diophantine_dyadic g1 xi
with_successful_candidate u t Phase0 = (uU, log_err) where
uU | denomexp (u + t) < denomexp (u + omega * t)
= matrix2x2 (u, (adj t)) (t, adj u)
| otherwise
= matrix2x2 (u, (adj (omega*t))) (omega*t, adj u)
log_err
| err <= 0 = Nothing
| otherwise = Just (logBase_double 0.5 err)
err = sqrt (real (hs_sqnorm (uU_fixed zrot_fixed)) / 2)
uU_fixed = matrix_map fromDOmega uU
zrot_fixed = zrot (theta :: r)
with_successful_candidate u t Phase1 = (uU, log_err) where
uU | denomexp (u + t) < denomexp (u + omega * t)
= matrix2x2 (u, (adj t) * omega_inv) (t, adj u * omega_inv)
| otherwise
= matrix2x2 (u, (adj t)) (t * omega_inv, adj u * omega_inv)
log_err
| err <= 0 = Nothing
| otherwise = Just (logBase_double 0.5 err)
err = sqrt (real (hs_sqnorm (sqrt_omega `scalarmult` uU_fixed zrot_fixed)) / 2)
uU_fixed = matrix_map fromDOmega uU
zrot_fixed = zrot (theta :: r)
sqrt_omega = Cplx (cos (pi/8)) (sin (pi/8))
omega_inv = omega^7
delta_inv = roothalf * (omega i)
mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
mergeBy c [] l2 = l2
mergeBy c l1 [] = l1
mergeBy c (h1:t1) (h2:t2)
| c h1 h2 == LT = h1:(mergeBy c t1 (h2:t2))
| otherwise = h2:(mergeBy c (h1:t1) t2)
first :: (a,b,c) -> a
first (a,b,c) = a