{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DerivingVia #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UnboxedTuples #-} -- | Tests for 'NoThunks.Class' -- -- These tests are tricky, since we want to have precisely control over where -- there are and aren't thunks, without letting ghc ruin things (normally of -- course ghc should be free to change a lot of that behaviour). -- -- We avoid bang patterns as well as the use of '($!)', to make sure that these -- tests pass with @-O0@. module Test.NoThunks.Class (tests) where import Control.Monad.IO.Class import Data.Kind import Data.Maybe (isNothing) import Data.Proxy import Data.Sequence (Seq) import Data.Typeable import GHC.Generics (Generic) import GHC.Types import System.Random import Test.Tasty import Test.Tasty.Hedgehog import qualified Data.Sequence as Seq import qualified Data.Sequence.Internal as Seq.Internal import qualified Control.Concurrent.MVar as MVar import qualified Control.Concurrent.STM as STM import qualified Control.Concurrent.STM.TVar as TVar import qualified Data.IORef as IORef import Hedgehog import Hedgehog.Internal.Report (Result (..), reportStatus) import Hedgehog.Internal.Region (displayRegion) import Hedgehog.Internal.Runner (checkNamed) import Hedgehog.Internal.Config (UseColor (..)) import qualified Hedgehog.Gen as Gen import qualified Hedgehog.Range as Range import NoThunks.Class {------------------------------------------------------------------------------- Top-level -------------------------------------------------------------------------------} tests :: TestTree tests = testGroup "NoThunks.Class" [ testGroup "Sanity" [ testProperty "IntNotNF" sanityCheckIntNotNF , testProperty "IntIsNF" sanityCheckIntIsNF , testProperty "Pair" sanityCheckPair , testProperty "Sum" sanityCheckSum , testProperty "Fn" sanityCheckFn , testProperty "IO" sanityCheckIO ] , testGroup "InspectHeap" [ testProperty "Int" $ testWithModel agreeOnNF $ Proxy @(InspectHeap Int) , testProperty "IntInt" $ testWithModel agreeOnNF $ Proxy @(InspectHeap (Int, Int)) , testProperty "SumInt" $ testWithModel agreeOnNF $ Proxy @(InspectHeap (Either Int Int)) , testProperty "ListInt" $ testWithModel agreeOnNF $ Proxy @(InspectHeap [Int]) , testProperty "IntListInt" $ testWithModel agreeOnNF $ Proxy @(InspectHeap (Int, [Int])) , testProperty "SeqInt" $ expectFailure $ testWithModel agreeOnNF $ Proxy @(InspectHeap (Seq Int)) ] , testGroup "Model" [ testProperty "Int" $ testWithModel agreeOnContext $ Proxy @Int , testProperty "IntInt" $ testWithModel agreeOnContext $ Proxy @(Int, Int) , testProperty "SumInt" $ testWithModel agreeOnContext $ Proxy @(Either Int Int) , testProperty "ListInt" $ testWithModel agreeOnContext $ Proxy @[Int] , testProperty "IntListInt" $ testWithModel agreeOnContext $ Proxy @(Int, [Int]) , testProperty "SeqInt" $ testWithModel agreeOnContext $ Proxy @(Seq Int) , testProperty "AllowThunksIn" $ testWithModel agreeOnContext $ Proxy @(AllowThunksIn '["field1"] Record) , testProperty "Fn" $ testWithModel agreeOnContext $ Proxy @(Int -> Int) , testProperty "IO" $ testWithModel agreeOnContext $ Proxy @(IO ()) , testProperty "ThunkFreeFn" $ testWithModel agreeOnContext $ Proxy @(ThunkFree "->" (Int -> Int)) , testProperty "ThunkFreeIO" $ testWithModel agreeOnContext $ Proxy @(ThunkFree "IO" (IO ())) ] , testGroup "MutableVars" [ checkRef (Proxy :: Proxy IORef.IORef) , checkRef (Proxy :: Proxy MVar.MVar) , checkRef (Proxy :: Proxy TVar.TVar) ] ] -- | When using @InspectHeap@ we don't get a context, so merely check if -- both the model and the implementation agree whether or not the value is -- in NF agreeOnNF :: Maybe ThunkInfo -> Maybe [String] -> Bool agreeOnNF mThunk mCtxt = isNothing mThunk == isNothing mCtxt -- | Check whether the model and the implementation agree on whether the value -- is in NF, and if not, what the context of the thunk is. agreeOnContext :: Maybe ThunkInfo -> Maybe [String] -> Bool agreeOnContext mThunk mCtxt = (thunkContext <$> mThunk) == mCtxt {------------------------------------------------------------------------------- Infrastructure -------------------------------------------------------------------------------} -- | The model for a value describes that value, being explicit where we -- can expect thunks in the value. class (NoThunks a, Show (Model a)) => FromModel a where data Model a :: Type -- | Generate model value (see below for examples) genModel :: Gen (Model a) -- | Does the model describe a value in NF? modelIsNF :: [String] -> Model a -> IsNormalForm [String] -- | Context as it should be returned by 'noThunks' -- -- This has a default implementation in terms of 'modelIsNF': there are -- unexpected thunks iff the model is not fully in NF. modelUnexpected :: [String] -> Model a -> Maybe [String] modelUnexpected ctxt m = case modelIsNF ctxt m of IsNF -> Nothing IsWHNF c -> Just c NotWHNF c -> Just c -- | Translate from the model to an actual value -- -- The @a@ thunk should contain no unevaluated calls to 'fromModel'. fromModel :: forall r. Model a -> (a -> r) -> r -- | Is a value in normal form? data IsNormalForm a = IsNF -- ^ Value completely in normal form | IsWHNF a -- ^ Value is in WHNF, but not NF. Record information about thunk. | NotWHNF a -- ^ Value is not in WHNF. Record information about thunk. deriving (Show, Functor) -- | 'IsNormalForm' for a constructor applied to arguments -- -- A constructor applied to arguments is always in WHNF; it is in NF iff all -- arguments are. constrNF :: forall a. [IsNormalForm a] -> IsNormalForm a constrNF args = case firstNotNF args of Nothing -> IsNF Just a -> IsWHNF a where firstNotNF :: [IsNormalForm a] -> Maybe a firstNotNF [] = Nothing firstNotNF (NotWHNF a : _ ) = Just a firstNotNF (IsWHNF a : _ ) = Just a firstNotNF (IsNF : args') = firstNotNF args' testWithModel :: forall a. FromModel a => (Maybe ThunkInfo -> Maybe [String] -> Bool) -> Proxy a -- ^ Compare @ThunkInfo@. When we use 'noThunks' this -- can just be @(==)@; however, when we use 'isNormalForm', the -- context we will get from the model will be too detailed. -> Property testWithModel compareInfo _proxy = withTests 1000 $ property $ do m :: Model a <- forAll genModel collect $ modelUnexpected [] m fromModel m $ \a -> do annotate $ show $ modelIsNF [] m isNF <- liftIO $ noThunks [] a Hedgehog.diff isNF compareInfo (modelUnexpected [] m) {------------------------------------------------------------------------------- Int -------------------------------------------------------------------------------} instance FromModel Int where data Model Int = IntThunk (Model Int) | IntValue Int deriving (Show) -- for integers there is no difference between NF/WHNF modelIsNF ctxt = \case IntThunk _ -> NotWHNF ctxt' IntValue _ -> IsNF where ctxt' = "Int" : ctxt fromModel (IntThunk i) k = fromModel i $ \i' -> k (if ack 3 3 > 0 then i' else i') fromModel (IntValue n) k = case n of I# result -> k (I# result) genModel = Gen.choice [ IntValue <$> Gen.int Range.linearBounded , IntThunk <$> genModel ] {------------------------------------------------------------------------------- Pairs -------------------------------------------------------------------------------} instance (FromModel a, FromModel b) => FromModel (a, b) where data Model (a, b) = PairThunk (Model (a, b)) | PairDefined (Model a) (Model b) modelIsNF ctxt = \case PairThunk _ -> NotWHNF ctxt' PairDefined a b -> constrNF [modelIsNF ctxt' a, modelIsNF ctxt' b] where #if MIN_VERSION_GLASGOW_HASKELL(9,8,0,0) ctxt' = "Tuple2" : ctxt #else ctxt' = "(,)" : ctxt #endif fromModel (PairThunk p) k = fromModel p $ \p' -> k (if ack 3 3 > 0 then p' else p') fromModel (PairDefined a b) k = fromModel a $ \a' -> fromModel b $ \b' -> k (a', b') genModel = Gen.choice [ PairDefined <$> genModel <*> genModel , PairThunk <$> genModel ] deriving instance (Show (Model a), Show (Model b)) => Show (Model (a, b)) {------------------------------------------------------------------------------- Sums -------------------------------------------------------------------------------} instance (FromModel a, FromModel b) => FromModel (Either a b) where data Model (Either a b) = SumThunk (Model (Either a b)) | LeftDefined (Model a) | RightDefined (Model b) modelIsNF ctxt = \case SumThunk _ -> NotWHNF ctxt' LeftDefined a -> constrNF [modelIsNF ctxt' a] RightDefined b -> constrNF [modelIsNF ctxt' b] where ctxt' = "Either" : ctxt fromModel (SumThunk p) k = fromModel p $ \p' -> k (if ack 3 3 > 0 then p' else p') fromModel (LeftDefined a) k = fromModel a $ \a' -> k (Left a') fromModel (RightDefined b) k = fromModel b $ \b' -> k (Right b') genModel = Gen.choice [ LeftDefined <$> genModel , RightDefined <$> genModel , SumThunk <$> genModel ] deriving instance (Show (Model a), Show (Model b)) => Show (Model (Either a b)) {------------------------------------------------------------------------------- Lists -------------------------------------------------------------------------------} instance FromModel a => FromModel [a] where data Model [a] = ListThunk (Model [a]) | ListNil | ListCons (Model a) (Model [a]) modelIsNF ctxt = \case ListThunk _ -> NotWHNF ctxt' ListNil -> IsNF ListCons x xs' -> constrNF [modelIsNF ctxt' x, modelIsNF ctxt xs'] where #if MIN_VERSION_GLASGOW_HASKELL(9,6,0,0) ctxt' = "List" : ctxt #else ctxt' = "[]" : ctxt #endif fromModel (ListThunk xs) k = fromModel xs $ \xs' -> k (if ack 3 3 > 0 then xs' else xs') fromModel ListNil k = k [] fromModel (ListCons x xs) k = fromModel x $ \x' -> fromModel xs $ \xs' -> k (x' : xs') genModel = do sz <- Gen.int $ Range.linear 0 10 go sz where go :: Int -> Gen (Model [a]) go 0 = pure ListNil go n = Gen.choice [ ListCons <$> genModel <*> go (n - 1) , ListThunk <$> go (n - 1) ] deriving instance Show (Model a) => Show (Model [a]) {------------------------------------------------------------------------------- Seq -------------------------------------------------------------------------------} instance FromModel (Seq Int) where data Model (Seq Int) = SeqEmpty | SeqEnqueue (Model Int) (Model (Seq Int)) deriving (Show) modelIsNF ctxt = \case SeqEmpty -> IsNF SeqEnqueue x xs -> constrNF [modelIsNF ctxt' x, modelIsNF ctxt xs] where ctxt' = "Seq" : ctxt fromModel m = \k -> go m $ \s -> forceSeqToWhnf s k where go :: Model (Seq Int) -> (Seq Int -> r) -> r go SeqEmpty k = k Seq.empty go (SeqEnqueue x xs) k = fromModel x $ \x' -> go xs $ \xs' -> k (x' Seq.<| xs') genModel = do sz <- Gen.int $ Range.linear 0 100 -- It is important that we have a good probability of generating sequences -- that the model considers to be in normal form: for such sequences the -- model and the 'isNormalForm' check (but not the 'noThunks' -- check) can diverge, because the internal @FingerTree@ may not be -- fully evaluated. Gen.choice [ go (pure $ IntValue 0) sz , go genModel sz ] where go :: Gen (Model Int) -> Int -> Gen (Model (Seq Int)) go _ 0 = return SeqEmpty go genInt n = SeqEnqueue <$> genInt <*> go genInt (n - 1) forceSeqToWhnf :: Seq a -> (Seq a -> r) -> r forceSeqToWhnf xs k = case xs of Seq.Internal.Seq Seq.Internal.EmptyT -> k (Seq.Internal.Seq Seq.Internal.EmptyT) Seq.Internal.Seq (Seq.Internal.Single a) -> k (Seq.Internal.Seq (Seq.Internal.Single a)) Seq.Internal.Seq (Seq.Internal.Deep n l ft r) -> k (Seq.Internal.Seq (Seq.Internal.Deep n l ft r)) {------------------------------------------------------------------------------- AllowThunksIn -------------------------------------------------------------------------------} data Record = Record { field1 :: [Int] , field2 :: Int } deriving (Generic, Show) instance FromModel (AllowThunksIn '["field1"] Record) where data Model (AllowThunksIn '["field1"] Record) = RecordThunk (Model (AllowThunksIn '["field1"] Record)) | RecordDefined (Model [Int]) (Model Int) modelIsNF ctxt = \case RecordThunk _ -> NotWHNF ctxt' RecordDefined a b -> constrNF [modelIsNF ("field1" : ctxt') a, modelIsNF ("field2" : ctxt') b] where ctxt' = "Record" : ctxt modelUnexpected ctxt = \case RecordThunk _ -> Just ctxt' RecordDefined _ y -> modelUnexpected ("field2" : ctxt') y where ctxt' = "Record" : ctxt fromModel (RecordThunk r) k = fromModel r $ \r' -> k (if ack 3 3 > 0 then r' else r') fromModel (RecordDefined a b) k = fromModel a $ \a' -> fromModel b $ \b' -> k (AllowThunksIn (Record a' b')) genModel = Gen.choice [ RecordDefined <$> genModel <*> genModel , RecordThunk <$> genModel ] deriving instance Show (Model (AllowThunksIn '["field1"] Record)) {------------------------------------------------------------------------------- Special case: function closures Since we don't traverse the function closure, we should only check if the function itself is in WHNF or not. We have to be careful here exactly how we phrase this test to avoid the GHC optimizer being too smart, turning what we think ought to be thunks into top-level CAFs. -------------------------------------------------------------------------------} -- | Function which is not strict in either 'Int' argument {-# NOINLINE notStrict #-} notStrict :: Bool -> Int -> Int -> Int notStrict False x _ = x notStrict True _ y = y definitelyInNF :: Int -> Int definitelyInNF n = n instance FromModel (Int -> Int) where data Model (Int -> Int) = FnInNF -- Function in NF | FnNotInNF Bool Int -- Function in WHNF but not in NF | FnNotInWHNF (Model (Int -> Int)) -- Function not in WHNF | FnToWHNF (Model (Int -> Int)) -- Force function to WHNF deriving (Show) fromModel FnInNF k = k definitelyInNF fromModel (FnNotInNF b n) k = k (\x -> notStrict b (ack 5 n) x) -- Lambda is in WHNF fromModel (FnNotInWHNF f) k = fromModel f $ \f' -> k (if ack 3 3 > 0 then f' else f') fromModel (FnToWHNF f) k = fromModel f $ \f' -> f' `seq` k f' -- By default we don't distinguish between NF and WHNF for functions modelUnexpected ctxt m = case modelIsNF ctxt m of IsNF -> Nothing IsWHNF _ -> Nothing NotWHNF c -> Just c modelIsNF ctxt = \case FnInNF -> IsNF FnNotInNF _ _ -> IsWHNF ctxt' FnNotInWHNF _ -> NotWHNF ctxt' FnToWHNF f -> case f of -- Forcing a function already in NF leaves it in NF FnInNF -> IsNF -- Forcing a function which is already in WHNF (but not in NF) -- leaves it in WHNF FnNotInNF _ _ -> IsWHNF ctxt' -- Forcing a computation reveals what's underneath it. -- We leave the 'FnToWHNF' constructor at the top because -- It doens't matter quite how many computations are underneath, -- a single force forces them all. FnNotInWHNF f' -> modelIsNF ctxt (FnToWHNF f') -- Forcing twice is the same as forcing once FnToWHNF f' -> modelIsNF ctxt (FnToWHNF f') where ctxt' = ("->" : ctxt) genModel = Gen.choice [ pure FnInNF , FnNotInNF <$> Gen.bool <*> Gen.int Range.linearBounded , FnNotInWHNF <$> genModel , FnToWHNF <$> genModel ] {------------------------------------------------------------------------------- Special case: IO Similar kind of thing as for function closures. Here we have to be even more careful in our choice of examples to get something that works both with @-O0@ and @-O1@. -------------------------------------------------------------------------------} -- IO action which is definitely in NF doNothing :: IO () doNothing = IO (\w -> (# w, () #) ) instance FromModel (IO ()) where -- We reuse the model we use for functions, we do the same 4 types newtype Model (IO ()) = ModelIO (Model (Int -> Int)) deriving Show fromModel (ModelIO m) = go m where go :: Model (Int -> Int) -> (IO () -> r) -> r go FnInNF k = k doNothing go (FnNotInNF b n) k = k (IO (\w -> let x = notStrict b (ack 5 n) 6 in x `seq` (# w, () #) )) go (FnNotInWHNF f) k = go f $ \f' -> k (if ack 3 3 > 0 then f' else f') go (FnToWHNF f) k = go f $ \f' -> f' `seq` k f' modelUnexpected ctxt (ModelIO f) = fnToIOContext <$> modelUnexpected ctxt f modelIsNF ctxt (ModelIO f) = fnToIOContext <$> modelIsNF ctxt f genModel = ModelIO <$> genModel fnToIOContext :: [String] -> [String] fnToIOContext ("->" : ctxt) = "IO" : ctxt fnToIOContext ("..." : "->" : ctxt) = "..." : "IO" : ctxt fnToIOContext ctxt = ctxt {------------------------------------------------------------------------------- Check that we /can/ check functions and IO actions for nested thunks -------------------------------------------------------------------------------} newtype ThunkFree (name :: Symbol) a = ThunkFree a deriving NoThunks via InspectHeapNamed name a instance FromModel (ThunkFree "->" (Int -> Int)) where newtype Model (ThunkFree "->" (Int -> Int)) = ThunkFreeFn (Model (Int -> Int)) deriving (Show) genModel = ThunkFreeFn <$> genModel fromModel (ThunkFreeFn f) k = fromModel f $ \f' -> k (ThunkFree f') modelIsNF ctxt (ThunkFreeFn f) = modelIsNF ctxt f modelUnexpected ctxt m = case modelIsNF ctxt m of IsNF -> Nothing IsWHNF _ -> Just ["...", "->"] NotWHNF _ -> Just ["->"] instance FromModel (ThunkFree "IO" (IO ())) where newtype Model (ThunkFree "IO" (IO ())) = ThunkFreeIO (Model (Int -> Int)) deriving (Show) genModel = ThunkFreeIO <$> genModel fromModel (ThunkFreeIO m) k = fromModel (ModelIO m) $ \f -> k (ThunkFree f) modelIsNF ctxt (ThunkFreeIO f) = fnToIOContext <$> modelIsNF ctxt (ThunkFreeFn f) modelUnexpected ctxt (ThunkFreeIO f) = fnToIOContext <$> modelUnexpected ctxt (ThunkFreeFn f) {------------------------------------------------------------------------------- Using the standard 'isNormalForm' check -------------------------------------------------------------------------------} instance (FromModel a, Typeable a) => FromModel (InspectHeap a) where newtype Model (InspectHeap a) = Wrap { unwrap :: Model a } genModel = Wrap <$> genModel modelUnexpected ctxt = modelUnexpected ctxt . unwrap modelIsNF ctxt = modelIsNF ctxt . unwrap fromModel m k = fromModel (unwrap m) $ \x -> k (InspectHeap x) deriving instance Show (Model a) => Show (Model (InspectHeap a)) {------------------------------------------------------------------------------- Some sanity checks These are primarily designed to check that we can distinguish between functions with nested thunks and functions without. -------------------------------------------------------------------------------} {-# NOINLINE checkNF #-} checkNF :: Bool -> ((a -> PropertyT IO ()) -> PropertyT IO ()) -> Property checkNF expectedNF k = withTests 1 $ property $ k $ \a -> do nf <- liftIO $ noThunks [] (InspectHeapNamed @"a" a) isNothing nf === expectedNF {-# NOINLINE sanityCheckIntNotNF #-} sanityCheckIntNotNF :: Property sanityCheckIntNotNF = checkNF False (\k -> k (if ack 3 3 > 0 then x else x)) where x :: Int x = 0 {-# NOINLINE sanityCheckIntIsNF #-} sanityCheckIntIsNF :: Property sanityCheckIntIsNF = x `seq` checkNF True (\k -> k x) where x :: Int x = I# 0# {-# NOINLINE sanityCheckPair #-} sanityCheckPair :: Property sanityCheckPair = checkNF False (\k -> k (if ack 3 3 > 0 then x else x)) where x :: (Int, Bool) x = (0, True) {-# NOINLINE sanityCheckSum #-} sanityCheckSum :: Property sanityCheckSum = checkNF False (\k -> k (if ack 3 3 > 0 then x else x)) where x :: Either Int Int x = Right 0 {-# NOINLINE sanityCheckFn #-} sanityCheckFn :: Property sanityCheckFn = checkNF False $ \k -> do b <- liftIO $ randomRIO (False, True) n <- liftIO $ ack 5 <$> randomRIO (0, 10) k (notStrict b n :: Int -> Int) {-# NOINLINE sanityCheckIO #-} sanityCheckIO :: Property sanityCheckIO = checkNF False $ \k -> do b <- liftIO $ randomRIO (False, True) n <- liftIO $ ack 5 <$> randomRIO (0, 10) k (print (notStrict b n 6) :: IO ()) {------------------------------------------------------------------------------- Mutable Vars -------------------------------------------------------------------------------} checkRef :: forall ref. (IsRef ref, NoThunks (ref Int)) => Proxy ref -> TestTree checkRef p = testGroup (show (typeRep p)) [ testProperty "NotNF" checkRefNotNF , testProperty "NF" checkRefNF , testProperty "NotNFPure" checkRefNotNFPure , testProperty "NFPure" checkRefNFPure , testProperty "NotNFAtomically" checkRefNotNFAtomically , testProperty "NFAtomically" checkRefNFAtomically ] where checkRefNotNF :: Property checkRefNotNF = checkNFClass False $ \k -> do ref <- liftIO (newRef (if ack 3 3 > 0 then x else x) :: IO (ref Int)) k ref where x :: Int x = 0 checkRefNF :: Property checkRefNF = checkNFClass True $ \k -> do !ref <- liftIO (newRef x :: IO (ref Int)) k ref where x :: Int !x = 0 checkRefNotNFPure :: Property checkRefNotNFPure = unsafeCheckNF False $ \k -> do ref <- liftIO (newRef (if ack 3 3 > 0 then x else x) :: IO (ref Int)) k ref where x :: Int x = 0 checkRefNFPure :: Property checkRefNFPure = unsafeCheckNF True $ \k -> do !ref <- liftIO (newRef x :: IO (ref Int)) k ref where x :: Int !x = 0 checkRefNotNFAtomically :: Property checkRefNotNFAtomically = unsafeCheckNFAtomically False $ \k -> do ref <- liftIO (newRef (if ack 3 3 > 0 then x else x) :: IO (ref Int)) k ref where x :: Int x = 0 checkRefNFAtomically :: Property checkRefNFAtomically = unsafeCheckNFAtomically True $ \k -> do !ref <- liftIO (newRef x :: IO (ref Int)) k ref where x :: Int !x = 0 class Typeable ref => IsRef ref where newRef :: a -> IO (ref a) instance IsRef IORef.IORef where newRef = IORef.newIORef instance IsRef MVar.MVar where newRef = MVar.newMVar instance IsRef TVar.TVar where newRef = TVar.newTVarIO checkNFClass :: NoThunks a => Bool -> ((a -> PropertyT IO ()) -> PropertyT IO ()) -> Property checkNFClass expectedNF k = withTests 1 $ property $ k $ \x -> do nf <- liftIO $ noThunks [] x isNothing nf === expectedNF {-# NOINLINE unsafeCheckNF #-} unsafeCheckNF :: NoThunks a => Bool -> ((a -> PropertyT IO ()) -> PropertyT IO ()) -> Property unsafeCheckNF expectedNF k = withTests 1 $ property $ k $ \x -> do let nf = unsafeNoThunks x isNothing nf === expectedNF {-# NOINLINE unsafeCheckNFAtomically #-} unsafeCheckNFAtomically :: NoThunks a => Bool -> ((a -> PropertyT IO ()) -> PropertyT IO ()) -> Property unsafeCheckNFAtomically expectedNF k = withTests 1 $ property $ k $ \x -> do tvar <- liftIO (TVar.newTVarIO True) true <- liftIO $ STM.atomically $ do val <- TVar.readTVar tvar -- the $! is essential to trigger NestedAtomically exception. return $! val && isNothing (unsafeNoThunks x) true === expectedNF {------------------------------------------------------------------------------- Hedgehog auxiliary -------------------------------------------------------------------------------} expectFailure :: Property -> Property expectFailure p = withTests 1 $ property $ do report <- liftIO $ displayRegion $ \r -> checkNamed r EnableColor (Just "EXPECTED FAILURE") Nothing p case reportStatus report of Failed _ -> success _otherwise -> do footnote "The test passed, but we expected it to fail." failure {------------------------------------------------------------------------------- Auxiliary -------------------------------------------------------------------------------} -- | Ackermann (anything that ghc won't just optimize away..) ack :: Int -> Int -> Int ack 0 n = succ n ack m 0 = ack (pred m) 1 ack m n = ack (pred m) (ack m (pred n))