module Number.Peano where
import qualified Algebra.PrincipalIdealDomain as PID
import qualified Algebra.Units as Units
import qualified Algebra.RealIntegral as RealIntegral
import qualified Algebra.IntegralDomain as Integral
import qualified Algebra.Absolute as Absolute
import qualified Algebra.Ring as Ring
import qualified Algebra.Additive as Additive
import qualified Algebra.ZeroTestable as ZeroTestable
import qualified Algebra.Indexable as Indexable
import qualified Algebra.Monoid as Monoid
import qualified Algebra.ToInteger as ToInteger
import qualified Algebra.ToRational as ToRational
import qualified Algebra.NonNegative as NonNeg
import qualified Algebra.EqualityDecision as EqDec
import qualified Algebra.OrderDecision as OrdDec
import Data.Maybe (catMaybes, )
import Data.Array(Ix(..))
import qualified Prelude as P98
import Data.List.HT (mapAdjacent, shearTranspose, )
import Data.Tuple.HT (mapFst, )
import NumericPrelude.Base
import NumericPrelude.Numeric
data T = Zero
| Succ T
deriving (Show, Read, Eq)
infinity :: T
infinity = Succ infinity
err :: String -> String -> a
err func msg = error ("Number.Peano."++func++": "++msg)
instance ZeroTestable.C T where
isZero Zero = True
isZero (Succ _) = False
add :: T -> T -> T
add Zero y = y
add (Succ x) y = Succ (add x y)
sub :: T -> T -> T
sub x y =
let (sign,z) = subNeg y x
in if sign
then err "sub" "negative difference"
else z
subNeg :: T -> T -> (Bool, T)
subNeg Zero y = (False, y)
subNeg x Zero = (True, x)
subNeg (Succ x) (Succ y) = subNeg x y
mul :: T -> T -> T
mul Zero _ = Zero
mul _ Zero = Zero
mul (Succ x) y = add y (mul x y)
fromPosEnum :: (ZeroTestable.C a, Enum a) => a -> T
fromPosEnum n =
if isZero n
then Zero
else Succ (fromPosEnum (pred n))
toPosEnum :: (Additive.C a, Enum a) => T -> a
toPosEnum Zero = zero
toPosEnum (Succ x) = succ (toPosEnum x)
instance Additive.C T where
zero = Zero
(+) = add
() = sub
negate Zero = Zero
negate (Succ _) = err "negate" "cannot negate positive number"
instance Ring.C T where
one = Succ Zero
(*) = mul
fromInteger n =
if n<0
then err "fromInteger" "Peano numbers are always non-negative"
else fromPosEnum n
instance Enum T where
pred Zero = err "pred" "Zero has no predecessor"
pred (Succ x) = x
succ = Succ
toEnum n =
if n<0
then err "toEnum" "Peano numbers are always non-negative"
else fromPosEnum n
fromEnum = toPosEnum
enumFrom x = iterate Succ x
enumFromThen x y =
let (sign,d) = subNeg x y
in if sign
then iterate (sub d) x
else iterate (add d) x
ifLazy :: Bool -> T -> T -> T
ifLazy b (Succ x) (Succ y) = Succ (ifLazy b x y)
ifLazy b x y = if b then x else y
instance EqDec.C T where
(==?) x y = ifLazy (x==y)
instance OrdDec.C T where
(<=?) x y le gt = ifLazy (x<=y) le gt
instance Ord T where
compare (Succ x) (Succ y) = compare x y
compare Zero (Succ _) = LT
compare (Succ _) Zero = GT
compare Zero Zero = EQ
min (Succ x) (Succ y) = Succ (min x y)
min _ _ = Zero
max (Succ x) (Succ y) = Succ (max x y)
max Zero y = y
max x Zero = x
_ < Zero = False
Zero < _ = True
Succ n < Succ m = n < m
x > y = y < x
x <= y = not (y < x)
x >= y = not (x < y)
argMinFull :: (T,a) -> (T,a) -> (T,a)
argMinFull (x0,xv) (y0,yv) =
let recourse (Succ x) (Succ y) =
let (z,zv) = recourse x y
in (Succ z, zv)
recourse Zero _ = (Zero,xv)
recourse _ _ = (Zero,yv)
in recourse x0 y0
argMin :: (T,a) -> (T,a) -> a
argMin x y = snd $ argMinFull x y
argMinimum :: [(T,a)] -> a
argMinimum = snd . foldl1 argMinFull
argMaxFull :: (T,a) -> (T,a) -> (T,a)
argMaxFull (x0,xv) (y0,yv) =
let recourse (Succ x) (Succ y) =
let (z,zv) = recourse x y
in (Succ z, zv)
recourse x Zero = (x,xv)
recourse _ y = (y,yv)
in recourse x0 y0
argMax :: (T,a) -> (T,a) -> a
argMax x y = snd $ argMaxFull x y
argMaximum :: [(T,a)] -> a
argMaximum = snd . foldl1 argMaxFull
isAscendingFiniteList :: [T] -> Bool
isAscendingFiniteList [] = True
isAscendingFiniteList (x:xs) =
let decrement (Succ y) = Just y
decrement _ = Nothing
in case x of
Zero -> isAscendingFiniteList xs
Succ xd ->
case mapM decrement xs of
Nothing -> False
Just xsd -> isAscendingFiniteList (xd : xsd)
isAscendingFiniteNumbers :: [T] -> Bool
isAscendingFiniteNumbers = and . mapAdjacent (<=)
toListMaybe :: a -> T -> [Maybe a]
toListMaybe a =
let recourse Zero = [Just a]
recourse (Succ x) = Nothing : recourse x
in recourse
glue :: T -> T -> (T, (Bool, T))
glue Zero ys = (Zero, (True, ys))
glue xs Zero = (Zero, (False, xs))
glue (Succ xs) (Succ ys) =
mapFst Succ $ glue xs ys
isAscending :: [T] -> Bool
isAscending =
and . catMaybes . concat .
shearTranspose .
mapAdjacent (\x y ->
let (costs0,(le,_)) = glue x y
in toListMaybe le costs0)
data Valuable a = Valuable {costs :: T, value :: a}
deriving (Show, Eq, Ord)
increaseCosts :: T -> Valuable a -> Valuable a
increaseCosts inc ~(Valuable c x) = Valuable (inc+c) x
infixr 3 &&~
(&&~) :: Valuable Bool -> Valuable Bool -> Valuable Bool
(&&~) (Valuable xc xb) (Valuable yc yb) =
let (minc,~(le,difc)) = glue xc yc
(bCheap,bExpensive) =
if le
then (xb,yb)
else (yb,xb)
in increaseCosts minc $
uncurry Valuable $
if bCheap
then (difc, bExpensive)
else (Zero, False)
andW :: [Valuable Bool] -> Valuable Bool
andW =
foldr
(\b acc -> b &&~ increaseCosts one acc)
(Valuable Zero True)
leW :: T -> T -> Valuable Bool
leW x y =
let (minc,~(le,_difc)) = glue x y
in Valuable minc le
isAscendingW :: [T] -> Valuable Bool
isAscendingW =
andW . mapAdjacent leW
instance Absolute.C T where
signum Zero = zero
signum (Succ _) = one
abs = id
instance ToInteger.C T where
toInteger = toPosEnum
instance ToRational.C T where
toRational = toRational . toInteger
instance RealIntegral.C T where
quot = div
rem = mod
quotRem = divMod
instance Integral.C T where
div x y = fst (divMod x y)
mod x y = snd (divMod x y)
divMod x y =
let (isNeg,d) = subNeg y x
in if isNeg
then (zero,x)
else let (q,r) = divMod d y in (succ q,r)
instance Monoid.C T where
idt = zero
(<*>) = add
cumulate = foldr add Zero
instance NonNeg.C T where
split = glue
instance Ix T where
range = uncurry enumFromTo
index (lower,_) i =
let (sign,offset) = subNeg lower i
in if sign
then err "index" "index out of range"
else toPosEnum offset
inRange (lower,upper) i =
isAscending [lower, i, upper]
rangeSize (lower,upper) =
toPosEnum (sub lower (succ upper))
instance Indexable.C T where
compare = Indexable.ordCompare
instance Units.C T where
isUnit x = x == one
stdAssociate = id
stdUnit _ = one
stdUnitInv _ = one
instance PID.C T where
gcd = PID.euclid mod
extendedGCD = PID.extendedEuclid divMod
instance Bounded T where
minBound = Zero
maxBound = infinity
notImplemented :: String -> a
notImplemented name =
error $ "Number.Peano: method " ++ name ++ " cannot be implemented"
instance P98.Num T where
fromInteger = Ring.fromInteger
negate = Additive.negate
(+) = add
() = sub
(*) = mul
abs = notImplemented "abs"
signum = notImplemented "signum"
instance P98.Real T where
toRational = P98.toRational . toInteger
instance P98.Integral T where
rem = div
quot = mod
quotRem = divMod
div x y = fst (divMod x y)
mod x y = snd (divMod x y)
divMod x y =
let (sign,d) = subNeg y x
in if sign
then (0,x)
else let (q,r) = divMod d y in (succ q,r)
toInteger = toPosEnum