{-| Copyright : (c) Galois, Inc 2014-2015 Maintainer : Joe Hendrix <jhendrix@galois.com> This module declares classes for working with types with the kind @k -> *@ for any kind @k@. These are generalizations of the "Data.Functor.Classes" types as they work with any kind @k@, and are not restricted to '*'. -} {-# LANGUAGE CPP #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} #if MIN_VERSION_base(4,9,0) {-# LANGUAGE Safe #-} #else {-# LANGUAGE Trustworthy #-} #endif module Data.Parameterized.Classes ( -- * Equality exports Equality.TestEquality(..) , (Equality.:~:)(..) , EqF(..) , PolyEq(..) -- * Ordering generalization , OrdF(..) , lexCompareF , OrderingF(..) , joinOrderingF , orderingF_refl , toOrdering , fromOrdering -- * Typeclass generalizations , ShowF(..) , HashableF(..) , CoercibleF(..) -- * Optics generalizations , IndexF , IxValueF , IxedF(..) , IxedF'(..) , AtF(..) -- * KnownRepr , KnownRepr(..) -- * Re-exports , Data.Maybe.isJust ) where import Data.Functor.Const import Data.Hashable import Data.Maybe (isJust) import Data.Proxy import Data.Type.Equality as Equality -- We define these type alias here to avoid importing Control.Lens -- modules, as this apparently causes problems with the safe Hasekll -- checking. type Lens' s a = forall f. Functor f => (a -> f a) -> s -> f s type Traversal' s a = forall f. Applicative f => (a -> f a) -> s -> f s ------------------------------------------------------------------------ -- CoercibleF -- | An instance of 'CoercibleF' gives a way to coerce between -- all the types of a family. We generally use this to witness -- the fact that the type parameter to @rtp@ is a phantom type -- by giving an implementation in terms of Data.Coerce.coerce. class CoercibleF (rtp :: k -> *) where coerceF :: rtp a -> rtp b instance CoercibleF (Const x) where coerceF (Const x) = Const x ------------------------------------------------------------------------ -- EqF -- | @EqF@ provides a method @eqF@ for testing whether two parameterized -- types are equal. -- -- Unlike 'TestEquality', this only works when the type arguments are -- the same, and does not provide a proof that the types have the same -- type when they are equal. Thus this can be implemented over -- parameterized types that are unable to provide evidence that their -- type arguments are equal. class EqF (f :: k -> *) where eqF :: f a -> f a -> Bool instance Eq a => EqF (Const a) where eqF (Const x) (Const y) = x == y ------------------------------------------------------------------------ -- PolyEq -- | A polymorphic equality operator that generalizes 'TestEquality'. class PolyEq u v where polyEqF :: u -> v -> Maybe (u :~: v) polyEq :: u -> v -> Bool polyEq x y = isJust (polyEqF x y) ------------------------------------------------------------------------ -- Ordering -- | Ordering over two distinct types with a proof they are equal. data OrderingF x y where LTF :: OrderingF x y EQF :: OrderingF x x GTF :: OrderingF x y orderingF_refl :: OrderingF x y -> Maybe (x :~: y) orderingF_refl o = case o of LTF -> Nothing EQF -> Just Refl GTF -> Nothing -- | Convert 'OrderingF' to standard ordering. toOrdering :: OrderingF x y -> Ordering toOrdering LTF = LT toOrdering EQF = EQ toOrdering GTF = GT -- | Convert standard ordering to 'OrderingF'. fromOrdering :: Ordering -> OrderingF x x fromOrdering LT = LTF fromOrdering EQ = EQF fromOrdering GT = GTF -- | `joinOrderingF x y` first compares on x, returning an equivalent -- value if it is not `EQF`. If it is EQF, it returns `y`. joinOrderingF :: forall (a :: j) (b :: j) (c :: k) (d :: k) . OrderingF a b -> (a ~ b => OrderingF c d) -> OrderingF c d joinOrderingF EQF y = y joinOrderingF LTF _ = LTF joinOrderingF GTF _ = GTF ------------------------------------------------------------------------ -- OrdF -- | A parameterized type that can be compared on distinct instances. class TestEquality ktp => OrdF (ktp :: k -> *) where {-# MINIMAL compareF #-} -- | compareF compares two keys with different type parameters. -- Instances must ensure that keys are only equal if the type -- parameters are equal. compareF :: ktp x -> ktp y -> OrderingF x y leqF :: ktp x -> ktp y -> Bool leqF x y = case compareF x y of LTF -> True EQF -> True GTF -> False ltF :: ktp x -> ktp y -> Bool ltF x y = case compareF x y of LTF -> True EQF -> False GTF -> False geqF :: ktp x -> ktp y -> Bool geqF x y = case compareF x y of LTF -> False EQF -> True GTF -> True gtF :: ktp x -> ktp y -> Bool gtF x y = case compareF x y of LTF -> False EQF -> False GTF -> True -- | Compare two values, and if they are equal compare the next values, -- otherwise return LTF or GTF lexCompareF :: forall (f :: j -> *) (a :: j) (b :: j) (c :: k) (d :: k) . OrdF f => f a -> f b -> (a ~ b => OrderingF c d) -> OrderingF c d lexCompareF x y = joinOrderingF (compareF x y) ------------------------------------------------------------------------ -- ShowF -- | A parameterized type that can be shown on all instances. -- -- To implement @'ShowF' g@, one should implement an instance @'Show' -- (g tp)@ for all argument types @tp@, then write an empty instance -- @instance 'ShowF' g@. class ShowF (f :: k -> *) where -- | Provides a show instance for each type. withShow :: p f -> q tp -> (Show (f tp) => a) -> a default withShow :: Show (f tp) => p f -> q tp -> (Show (f tp) => a) -> a withShow _ _ x = x showF :: forall tp . f tp -> String showF x = withShow (Proxy :: Proxy f) (Proxy :: Proxy tp) (show x) showsF :: forall tp . f tp -> String -> String showsF x = withShow (Proxy :: Proxy f) (Proxy :: Proxy tp) (shows x) instance Show x => ShowF (Const x) ------------------------------------------------------------------------ -- IxedF type family IndexF (m :: *) :: k -> * type family IxValueF (m :: *) :: k -> * -- | Parameterized generalization of the lens @Ixed@ class. class IxedF k m where -- | Given an index into a container, build a traversal that visits -- the given element in the container, if it exists. ixF :: forall (x :: k). IndexF m x -> Traversal' m (IxValueF m x) -- | Parameterized generalization of the lens @Ixed@ class, -- but with the guarantee that indexes exist in the container. class IxedF k m => IxedF' k m where -- | Given an index into a container, build a lens that -- points into the given element in the container. ixF' :: forall (x :: k). IndexF m x -> Lens' m (IxValueF m x) ------------------------------------------------------------------------ -- AtF -- | Parameterized generalization of the lens @At@ class. class IxedF k m => AtF k m where -- | Given an index into a container, build a lens that points into -- the given position in the container, whether or not it currently -- exists. Setting values of @atF@ to a @Just@ value will insert -- the value if it does not already exist. atF :: forall (x :: k). IndexF m x -> Lens' m (Maybe (IxValueF m x)) ------------------------------------------------------------------------ -- HashableF -- | A default salt used in the implementation of 'hash'. defaultSalt :: Int #if WORD_SIZE_IN_BITS == 64 defaultSalt = 0xdc36d1615b7400a4 #else defaultSalt = 0x087fc72c #endif {-# INLINE defaultSalt #-} -- | A parameterized type that is hashable on all instances. class HashableF (f :: k -> *) where hashWithSaltF :: Int -> f tp -> Int -- | Hash with default salt. hashF :: f tp -> Int hashF = hashWithSaltF defaultSalt instance Hashable a => HashableF (Const a) where hashWithSaltF s (Const x) = hashWithSalt s x ------------------------------------------------------------------------ -- KnownRepr -- | This class is parameterized by a kind @k@ (typically a data -- kind), a type constructor @f@ of kind @k -> *@ (typically a GADT of -- singleton types indexed by @k@), and an index parameter @ctx@ of -- kind @k@. class KnownRepr (f :: k -> *) (ctx :: k) where knownRepr :: f ctx