module Math.NumberTheory.Pell (
Solution,
solve ) where
import Control.Arrow ((***))
import Data.List (sort, nub)
import Data.Ratio ((%))
import Data.Set (toList)
import Math.NumberTheory.Moduli.SquareRoots (sqrts)
import Math.NumberTheory.Pell.PQa (PQa(..), period)
import Math.NumberTheory.Powers.Squares (isSquare, integerSquareRoot)
import Math.NumberTheory.Primes.Factorisation (divisors)
fmzs :: Integer -> Integer -> [(Integer, Integer, [Integer])]
fmzs d n = map (\f -> let m = n `div` (f * f) in (f, m, zs m)) $ filter (\f -> (n `mod` (f * f)) == 0) $ toList $ divisors n where
zs :: Integer -> [Integer]
zs 1 = [0]
zs (1) = [0]
zs m = nub $ sort $ map norm $ sqrts d am where
am = abs m
am2 = floor (am % 2)
norm x = if x <= am2 then x else x am
getRS :: Integer -> Integer -> Integer -> Maybe (Integer, Integer)
getRS d m z =
let
(_, pqas) = period z (abs m) d
qrs = zipWith (\x y -> (q x, g y, b y)) (tail pqas) pqas
rss = map (\(_, r, s) -> (r, s)) $ filter (\(q', _, _) -> abs q' == 1) qrs
in
case rss of
[] -> Nothing
(rs : _) -> Just rs
type Solution = (Integer, Integer)
solvePlusOne :: Integer -> Solution
solvePlusOne d = case getRS d 1 0 of
Just (r, s)
| r * r d * s * s == 1 -> (r, s)
| otherwise -> (r * r + d * s * s, let rs = r * s in rs + rs)
Nothing -> error "algorithm error"
solveMinusOne :: Integer -> Maybe Solution
solveMinusOne d = case getRS d 1 0 of
Just (r, s)
| r * r d * s * s == (1) -> Just (r, s)
| otherwise -> Nothing
Nothing -> error "algorithm error"
getRep :: Integer -> Integer -> Integer -> Integer -> Integer -> Solution -> Maybe Solution -> Maybe Solution
getRep _ 1 _ _ _ x _ = Just x
getRep _ (1) _ _ _ _ y = y
getRep d _ f m z _ y = case getRS d m z of
Nothing -> Nothing
Just (r, s)
| r * r d * s * s == m -> Just (f * r, f * s)
| otherwise -> case y of
Nothing -> Nothing
Just (t, u) -> Just (f * (r * t + s * u * d), f * (r * u + s * t))
mul :: Integer -> Solution -> Solution -> Solution
mul d (x, y) (r, s) = (x * r + y * s * d, x * s + y * r)
getReps :: Integer -> Integer -> (Solution, [Solution])
getReps d n = ((r, s), reps) where
(r, s) = solvePlusOne d
minusOne = solveMinusOne d
reps = do
(f, m, zs) <- fmzs d n
do
z <- zs
case getRep d n f m z (r, s) minusOne of
Just (x, y) -> [if x >= 0 then (x, y) else mul d (r, s) (x, y)]
Nothing -> []
getMinimalReps :: Integer -> Integer -> (Solution, [Solution])
getMinimalReps d n = ((r, s), map toMinimal reps) where
((r, s), reps) = getReps d n
toMinimal (x, y) = minimum $ map (abs *** abs) $ filter (\(x', y') -> x' * y' >= 0) [(x, y), mul d (r, s) (x, y), mul d (r, s) (x, y)]
solve :: Integer -> Integer -> [Solution]
solve d n
| d <= 0 = error $ "D must be positive, but D == " ++ show d ++ "."
| isSquare d = error $ "D must not be a square, but D == " ++ show (integerSquareRoot d) ++ "^2."
| n == 0 = error "N must not be zero."
| otherwise = case getMinimalReps d n of
(_, []) -> []
((r, s), xys) -> go xys where
go xys' = normalize xys' ++ go (step xys')
normalize = sort . nub
step = map (mul d (r, s))