module Text.ParserCombinators.HuttonMeijer
(Parser(..), item, first, papply, (+++), sat, many, many1,
sepby, sepby1, chainl,
chainl1, chainr, chainr1, ops, bracket, char, digit, lower, upper,
letter, alphanum, string, ident, nat, int, spaces, comment, junk,
skip, token, natural, integer, symbol, identifier) where
import Data.Char
import Control.Applicative ( Applicative(pure,(<*>)), Alternative(empty,(<|>)) )
import Control.Monad
infixr 5 +++
type Token = Char
newtype Parser a = P ([Token] -> [(a,[Token])])
instance Functor Parser where
fmap f (P p) = P (\inp -> [(f v, out) | (v,out) <- p inp])
instance Applicative Parser where
pure = return
(<*>) = ap
instance Monad Parser where
return v = P (\inp -> [(v,inp)])
(P p) >>= f = P (\inp -> concat [papply (f v) out | (v,out) <- p inp])
fail _ = P (\_ -> [])
instance Alternative Parser where
empty = mzero
(<|>) = mplus
instance MonadPlus Parser where
mzero = P (\_ -> [])
(P p) `mplus` (P q) = P (\inp -> (p inp ++ q inp))
item :: Parser Token
item = P (\inp -> case inp of
[] -> []
(x:xs) -> [(x,xs)])
first :: Parser a -> Parser a
first (P p) = P (\inp -> case p inp of
[] -> []
(x:_) -> [x])
papply :: Parser a -> [Token] -> [(a,[Token])]
papply (P p) inp = p inp
(+++) :: Parser a -> Parser a -> Parser a
p +++ q = first (p `mplus` q)
sat :: (Token -> Bool) -> Parser Token
sat p = do {x <- item; if p x then return x else mzero}
many :: Parser a -> Parser [a]
many p = many1 p +++ return []
many1 :: Parser a -> Parser [a]
many1 p = do {x <- p; xs <- many p; return (x:xs)}
sepby :: Parser a -> Parser b -> Parser [a]
p `sepby` sep = (p `sepby1` sep) +++ return []
sepby1 :: Parser a -> Parser b -> Parser [a]
p `sepby1` sep = do {x <- p; xs <- many (do {sep; p}); return (x:xs)}
chainl :: Parser a -> Parser (a -> a -> a) -> a -> Parser a
chainl p op v = (p `chainl1` op) +++ return v
chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a
p `chainl1` op = do {x <- p; rest x}
where
rest x = do {f <- op; y <- p; rest (f x y)}
+++ return x
chainr :: Parser a -> Parser (a -> a -> a) -> a -> Parser a
chainr p op v = (p `chainr1` op) +++ return v
chainr1 :: Parser a -> Parser (a -> a -> a) -> Parser a
p `chainr1` op = do {x <- p; rest x}
where
rest x = do {f <- op; y <- p `chainr1` op; return (f x y)}
+++ return x
ops :: [(Parser a, b)] -> Parser b
ops xs = foldr1 (+++) [do {p; return op} | (p,op) <- xs]
bracket :: Parser a -> Parser b -> Parser c -> Parser b
bracket open p close = do {open; x <- p; close; return x}
char :: Char -> Parser Char
char x = sat (\y -> x == y)
digit :: Parser Char
digit = sat isDigit
lower :: Parser Char
lower = sat isLower
upper :: Parser Char
upper = sat isUpper
letter :: Parser Char
letter = sat isAlpha
alphanum :: Parser Char
alphanum = sat isAlphaNum +++ char '_'
string :: String -> Parser String
string "" = return ""
string (x:xs) = do {char x; string xs; return (x:xs)}
ident :: Parser String
ident = do {x <- lower; xs <- many alphanum; return (x:xs)}
nat :: Parser Int
nat = do {x <- digit; return (fromEnum x fromEnum '0')} `chainl1` return op
where
m `op` n = 10*m + n
int :: Parser Int
int = do {char '-'; n <- nat; return (n)} +++ nat
spaces :: Parser ()
spaces = do {many1 (sat isSpace); return ()}
comment :: Parser ()
comment = do
bracket (string "/*") (many item) (string "*/")
return ()
junk :: Parser ()
junk = do {many (spaces +++ comment); return ()}
skip :: Parser a -> Parser a
skip p = do {junk; p}
token :: Parser a -> Parser a
token p = do {v <- p; junk; return v}
natural :: Parser Int
natural = token nat
integer :: Parser Int
integer = token int
symbol :: String -> Parser String
symbol xs = token (string xs)
identifier :: [String] -> Parser String
identifier ks = token (do {x <- ident;
if not (elem x ks) then return x
else return mzero})