module Data.Profunctor.Monad where
import Control.Comonad
import Data.Bifunctor.Tannen
import Data.Bifunctor.Product
import Data.Bifunctor.Sum
import Data.Profunctor.Types
class ProfunctorFunctor t where
promap :: Profunctor p => (p :-> q) -> t p :-> t q
instance Functor f => ProfunctorFunctor (Tannen f) where
promap f (Tannen g) = Tannen (fmap f g)
instance ProfunctorFunctor (Product p) where
promap f (Pair p q) = Pair p (f q)
instance ProfunctorFunctor (Sum p) where
promap _ (L2 p) = L2 p
promap f (R2 q) = R2 (f q)
class ProfunctorFunctor t => ProfunctorMonad t where
proreturn :: Profunctor p => p :-> t p
projoin :: Profunctor p => t (t p) :-> t p
#if __GLASGOW_HASKELL__ < 710
instance (Functor f, Monad f) => ProfunctorMonad (Tannen f) where
#else
instance Monad f => ProfunctorMonad (Tannen f) where
#endif
proreturn = Tannen . return
projoin (Tannen m) = Tannen $ m >>= runTannen
instance ProfunctorMonad (Sum p) where
proreturn = R2
projoin (L2 p) = L2 p
projoin (R2 m) = m
class ProfunctorFunctor t => ProfunctorComonad t where
proextract :: Profunctor p => t p :-> p
produplicate :: Profunctor p => t p :-> t (t p)
instance Comonad f => ProfunctorComonad (Tannen f) where
proextract = extract . runTannen
produplicate (Tannen w) = Tannen $ extend Tannen w
instance ProfunctorComonad (Product p) where
proextract (Pair _ q) = q
produplicate pq@(Pair p _) = Pair p pq