Bridge between Telegram Bot and several proof assistants.
Currently following proof assistant supported: Agda, Arend, Coq, Idris 2, Lean, Rzk
See README.md for more details.
[
Skip to Readme]
Proof Assistant Bot
- Description
- Installation
- Coq
- Agda
- Idris 2
- Lean
- Arend
- Rzk
- Usage
- Available instances
- Acknowledgements
Description
This bot provides limited Telegram interfaces to following proof assistant programs (in order of implementation):
- Coq
- Agda
- Idris 2
- Lean
- Arend
- Rzk
Installation
- Bot could be built via following commands:
cabal update
cabal build
cabal install --overwrite-policy=always
- To launch bot you need to set environmental variables, see
./config/settings.dhall
for more details.
One of them is PROOF_ASSISTANT_BOT_TOKEN
. Obtain it via @BotFather
and set it:
export PROOF_ASSISTANT_BOT_TOKEN="..."
Coq
- Install
opam >= 2.1.0
, e.g. from here.
cd $HOME
opam --version
2.1.3
- Install
Coq
.
cd $HOME
opam init
eval $(opam env)
opam pin add coq 8.16.1
- Locate
coqtop
and set enviromental variable. Should be similar to:
export COQ_BIN_PATH="$HOME/.opam/default/bin/coqtop"
Agda
We do not need to worry about Agda
since it is included in package dependencies. It will be installed automatically. Meantime, Agda standard library should be installed manually.
-
Get agda-stdlib
from Github.
-
Unpack archive.
mkdir -p $PROOF_ASSISTANT_BOT_DIR/agda
cp agda-stdlib-1.7.1.tar.gz $PROOF_ASSISTANT_BOT_DIR/agda
cd $PROOF_ASSISTANT_BOT_DIR/agda
tar -xzvf agda-stdlib-1.7.1.tar.gz
export AGDA_STDLIB_PATH=$PROOF_ASSISTANT_BOT_DIR/agda/agda-stdlib-1.7.1
- Create file
$HOME/.agda/defaults
with following content:
standard-library
- Create file
$HOME/.agda/libraries
with following content:
$AGDA_STDLIB_PATH/standard-library.agda-lib
Idris 2
-
Get nix
from nixos.org.
-
Install idris2
via nix
:
nix-env -i idris2
- Set environmental variable:
export IDRIS2_BIN_PATH="$HOME/.nix-profile/bin/idris2"
Lean
-
Get nix
from nixos.org.
-
Install lean
via nix
:
nix-env -i lean
- Install
leanproject
via nix
:
nix-env -i mathlibtools
-
Run leanproject new lean
.
-
Set LEAN_BIN_PATH
environmental variable:
export LEAN_BIN_PATH="$HOME/.nix-profile/bin/lean"
- Set
LEAN_PROJECT_PATH
to the newly created project directory.
Arend
-
Get nix
from nixos.org.
-
Get java
and openjdk17
via nix
:
nix-env -i openjdk-17.0.4+8
-
Set JAVA_HOME
environment variable to your openjdk location. You can use readlink $HOME/.nix-profile/bin/java
and strip /bin/java
from the end.
-
Create project directory to store arend projects (for different Telegram chats)
and set AREND_ROOT_PROJECT_DIR
.
-
Get Arend standard library from the official site and store in ${AREND_ROOT_PROJECT_DIR}/libs
.
-
Point AREND_STDLIB_PATH
environment variable to the same location as AREND_ROOT_PROJECT_DIR
.
-
Download Arend.jar
and set AREND_PATH
environment variable to its location, e.g.
export AREND_PATH="${AREND_ROOT_PROJECT_DIR}/Arend.jar"
Rzk
No actions required. See cabal.project
for more details.
Usage
- Coq supports only typecheck of the user input via
/coq
command. Example:
/coq Inductive day : Type :=
| monday
| tuesday
| wednesday
| thursday
| friday
| saturday
| sunday.
Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday
| tuesday => wednesday
| wednesday => thursday
| thursday => friday
| friday => monday
| saturday => monday
| sunday => monday
end.
Compute (next_weekday friday).
Compute (next_weekday (next_weekday saturday)).
Example test_next_weekday:
(next_weekday (next_weekday saturday)) = tuesday.
Proof. simpl. reflexivity. Qed.
-
Agda is available via /agda
command. Bot supports several subcommands for Agda:
/agda /load <input>
. E.g.
/agda /load import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc m) + n = suc (m + n)
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3
≡⟨⟩ -- is shorthand for
(suc (suc zero)) + (suc (suc (suc zero)))
≡⟨⟩ -- inductive case
suc ((suc zero) + (suc (suc (suc zero))))
≡⟨⟩ -- inductive case
suc (suc (zero + (suc (suc (suc zero)))))
≡⟨⟩ -- base case
suc (suc (suc (suc (suc zero))))
≡⟨⟩ -- is longhand for
5
∎
/agda /reload
/agda /typeOf <expr>
. E.g. /agda /typeOf suc
.
/agda <expr>
. E.g. /agda suc zero + suc zero
.
-
Idris 2 via /idris2
command. Bot supports several subcommands for Idris 2:
/idris2 /load <input>
. E.g.
/idris2 /load module Main
import System.File.ReadWrite
tryPrint : Either FileError String -> IO ()
tryPrint (Left _) = putStrLn "error"
tryPrint (Right r) = putStrLn r
main : IO ()
main = do c <- readFile "hello.idr"
tryPrint c
/idris2 /typeOf <expr>
. E.g. /idris2 /typeOf Nat
.
/idris2 <expr>
. E.g. /idris2 2 + 3
.
-
Lean is available via /lean
command. Typecheck supported for the user input. Only several modes were tested (calc mode, conv mode, simplifier).
/lean import data.nat.basic
variables (a b c d e : ℕ)
variable h1 : a = b
variable h2 : b = c + 1
variable h3 : c = d
variable h4 : e = 1 + d
theorem T : a = e :=
calc
a = b : h1
... = c + 1 : h2
... = d + 1 : congr_arg _ h3
... = 1 + d : add_comm d (1 : ℕ)
... = e : eq.symm h4
/lean import topology.basic
#check topological_space
/lean import algebra.group.defs
variables (G : Type) [group G] (a b c : G)
example : a * a⁻¹ * 1 * b = b * c * c⁻¹ :=
begin
simp
end
-
Arend is available via /arend
command. Only typecheck supported.
/arend \func f => 0
-
Rzk is available via /rzk
command. Typechecker supported for every language.
/rzk #lang rzk-1
#def prod : (A : U) -> (B : U) -> U
:= \A -> \B -> ∑ (x : A), B
#def isweq : (A : U) -> (B : U) -> (f : (_ : A) -> B) -> U
:= \A -> \B -> \f ->
∑ (g : (_ : B) -> A),
prod ((x : A) -> g (f x) =_{A} x)
((y : B) -> f (g y) =_{B} y)
#def weq : (A : U) -> (B : U) -> U
:= \A -> \B -> ∑ (f : (_ : A) -> B), isweq A B f
#def Theorem-4.1
: (I : CUBE)
-> (psi : (t : I) -> TOPE)
-> (phi : {(t : I) | psi t} -> TOPE)
-> (X : U)
-> (Y : <{t : I | psi t} -> (x : X) -> U >)
-> (f : <{t : I | phi t} -> (x : X) -> Y t x >)
-> weq <{t : I | psi t} -> (x : X) -> Y t x [phi t |-> f t]>
((x : X) -> <{t : I | psi t} -> Y t x [phi t |-> f t x]>)
:= \I -> \psi -> \phi -> \X -> \Y -> \f ->
(\k -> \x -> \t -> k t x,
(\k -> \{t : I | psi t} -> \x -> (k x) t,
(\k -> refl_{k}, \k -> refl_{k})))
#def Theorem-4.2_uncurry_ext
: (I : CUBE)
-> (J : CUBE)
-> (psi : (t : I) -> TOPE)
-> (zeta : (s : J) -> TOPE)
-> (X : <{t : I | psi t} -> <{s : J | zeta s} -> U> >)
-> (chi : {(t : I) | psi t} -> TOPE)
-> (phi : {(s : J) | zeta s} -> TOPE)
-> (f : <{(t, s) : I * J | psi t /\ zeta s} -> X t s >)
-> (_ : <{t : I | psi t}
-> <{s : J | zeta s}
-> X t s [chi s |-> f (t, s)]>
[phi t |-> \s -> f (t, s)]>)
-> <{(t, s) : I * J | psi t /\ zeta s}
-> X t s [(phi t /\ zeta s) \/ (psi t /\ chi s) |-> f (t, s)]>
:= \I -> \J -> \psi -> \zeta -> \X -> \chi -> \phi -> \f ->
\k -> \(t, s) -> k t s
Available instances
- @ProofBot (online)
- @ProofDebugBot (for debug purpose, offline most of the time)
Acknowledgements
- PLTT Community
- Nikolay Kudasov
- Andrey Borzenkov
- Matúš Tejiščák
- My wife