module Q4C12.TwoFinger.Internal where
import Control.DeepSeq (NFData)
import Control.Monad (ap)
import Data.Bifunctor (Bifunctor (bimap), first, second)
import Data.Bifoldable (Bifoldable (bifoldMap), biall)
import Data.Bitraversable
(Bitraversable (bitraverse), bifoldMapDefault, bimapDefault)
import Data.Functor.Alt (Alt ((<!>)))
import Data.Functor.Apply
( Apply, (<.>), MaybeApply (MaybeApply)
, WrappedApplicative (WrapApplicative), unwrapApplicative
)
import Data.Functor.Bind (Bind ((>>-)))
import Data.Functor.Classes
( Eq2 (liftEq2), Eq1 (liftEq), eq2, Show2 (liftShowsPrec2)
, Show1 (liftShowsPrec), showsPrec2
)
import Data.Functor.Plus (Plus (zero))
import Data.List (foldl')
import Data.List.NonEmpty (NonEmpty ((:|)))
import Data.Maybe (isNothing)
import Data.Semigroup (Semigroup ((<>)))
import Data.Semigroup.Bifoldable (Bifoldable1 (bifoldMap1))
import Data.Semigroup.Bitraversable
(Bitraversable1 (bitraverse1), bifoldMap1Default)
import Data.Semigroup.Foldable (Foldable1 (foldMap1))
import Data.Semigroup.Traversable
(Traversable1 (traverse1), foldMap1Default)
import Data.Stream.Infinite
(Stream ((:>)))
import qualified Data.Stream.Infinite as Stream
import Data.Traversable (foldMapDefault, fmapDefault)
import GHC.Generics (Generic)
import Test.QuickCheck (Gen)
import qualified Test.QuickCheck as QC
(<.*>) :: (Apply f) => f (a -> b) -> MaybeApply f a -> f b
ff <.*> MaybeApply (Left fa) = ff <.> fa
ff <.*> MaybeApply (Right a) = ($ a) <$> ff
infixl 4 <.*>
(<*.>) :: (Apply f) => MaybeApply f (a -> b) -> f a -> f b
MaybeApply (Left ff) <*.> fa = ff <.> fa
MaybeApply (Right f) <*.> fa = f <$> fa
infixl 4 <*.>
traverseDefault
:: (Applicative f, Traversable1 t) => (a -> f a') -> t a -> f (t a')
traverseDefault f = unwrapApplicative . traverse1 (WrapApplicative . f)
bitraverseDefault
:: (Applicative f, Bitraversable1 t)
=> (a -> f a') -> (b -> f b') -> t a b -> f (t a' b')
bitraverseDefault f g =
unwrapApplicative . bitraverse1 (WrapApplicative . f) (WrapApplicative . g)
data Digit e a
= One e
| Two e a e
| Three e a e a e
| Four e a e a e a e
deriving (Functor, Foldable, Traversable, Generic)
instance (NFData e, NFData a) => NFData (Digit e a)
instance Bifunctor Digit where
bimap = bimapDefault
instance Bifoldable Digit where
bifoldMap = bifoldMapDefault
instance Bifoldable1 Digit where
bifoldMap1 = bifoldMap1Default
instance Bitraversable Digit where
bitraverse = bitraverseDefault
instance Bitraversable1 Digit where
bitraverse1 f _ (One e) = One <$> f e
bitraverse1 f g (Two e1 a1 e2) = Two <$> f e1 <.> g a1 <.> f e2
bitraverse1 f g (Three e1 a1 e2 a2 e3) =
Three <$> f e1 <.> g a1 <.> f e2 <.> g a2 <.> f e3
bitraverse1 f g (Four e1 a1 e2 a2 e3 a3 e4) =
Four <$> f e1 <.> g a1 <.> f e2 <.> g a2 <.> f e3 <.> g a3 <.> f e4
data Node e a = Node2 e a e | Node3 e a e a e
deriving (Functor, Foldable, Traversable, Eq, Generic)
instance (NFData e, NFData a) => NFData (Node e a)
instance Foldable1 (Node e) where
foldMap1 = foldMap1Default
instance Traversable1 (Node e) where
traverse1 f (Node2 e1 a1 e2) = Node2 e1 <$> f a1 <.*> pure e2
traverse1 f (Node3 e1 a1 e2 a2 e3) =
Node3 e1 <$> f a1 <.*> pure e2 <.> f a2 <.*> pure e3
instance Bifunctor Node where
bimap = bimapDefault
instance Bifoldable Node where
bifoldMap = bifoldMapDefault
instance Bifoldable1 Node where
bifoldMap1 = bifoldMap1Default
instance Bitraversable Node where
bitraverse = bitraverseDefault
instance Bitraversable1 Node where
bitraverse1 f g (Node2 e1 a1 e2) = Node2 <$> f e1 <.> g a1 <.> f e2
bitraverse1 f g (Node3 e1 a1 e2 a2 e3) =
Node3 <$> f e1 <.> g a1 <.> f e2 <.> g a2 <.> f e3
data TwoFingerOddA e a
= EmptyOddA a
| SingleOddA a e a
| DeepOddA a !(Digit e a) (TwoFingerOddA (Node e a) a) !(Digit e a) a
deriving (Generic)
instance Show2 TwoFingerOddA where
liftShowsPrec2 f _ g _ d = go (d > 10)
where
go paren tree = showParen paren $ case unconsOddA tree of
Left a -> showString "singletonOddA " . g 11 a
Right ((a, e), tree')
-> showString "consOddA "
. g 11 a . showString " "
. f 11 e . showString " "
. go True tree'
instance (Show e) => Show1 (TwoFingerOddA e) where
liftShowsPrec = liftShowsPrec2 showsPrec showList
instance (Show e, Show a) => Show (TwoFingerOddA e a) where
showsPrec = showsPrec2
instance Eq2 TwoFingerOddA where
liftEq2 f g as bs = case alignLeftOddAOddA as bs of
(aligned, rest) ->
biall (uncurry f) (uncurry g) aligned && noMore rest
where
noMore :: Either (TwoFingerEvenE a b) (TwoFingerEvenE c d) -> Bool
noMore = either (isNothing . unconsEvenE) (isNothing . unconsEvenE)
instance (Eq e) => Eq1 (TwoFingerOddA e) where
liftEq = liftEq2 (==)
instance (Eq e, Eq a) => Eq (TwoFingerOddA e a) where
(==) = eq2
instance (NFData e, NFData a) => NFData (TwoFingerOddA e a)
firstOddA
:: (Functor f) => (a -> f a) -> TwoFingerOddA e a -> f (TwoFingerOddA e a)
firstOddA f (halfunconsOddA -> (a, tree)) = flip halfconsEvenE tree <$> f a
lastOddA
:: (Functor f) => (a -> f a) -> TwoFingerOddA e a -> f (TwoFingerOddA e a)
lastOddA f (halfunsnocOddA -> (tree, a)) = halfsnocEvenA tree <$> f a
instance Functor (TwoFingerOddA e) where
fmap = fmapDefault
instance Foldable (TwoFingerOddA e) where
foldMap = foldMapDefault
instance Foldable1 (TwoFingerOddA e) where
foldMap1 = foldMap1Default
instance Traversable (TwoFingerOddA e) where
traverse = bitraverse pure
instance Traversable1 (TwoFingerOddA e) where
traverse1 f (EmptyOddA a) = EmptyOddA <$> f a
traverse1 f (SingleOddA a1 e1 a2) = SingleOddA <$> f a1 <.*> pure e1 <.> f a2
traverse1 f (DeepOddA a0 pr m sf a1) = DeepOddA
<$> f a0
<.*> traverse (MaybeApply . Left . f) pr
<.> bitraverse1 (traverse1 f) f m
<.*> traverse (MaybeApply . Left . f) sf
<.> f a1
instance Bifunctor TwoFingerOddA where
bimap = bimapDefault
instance Bifoldable TwoFingerOddA where
bifoldMap = bifoldMapDefault
instance Bifoldable1 TwoFingerOddA where
bifoldMap1 = bifoldMap1Default
instance Bitraversable TwoFingerOddA where
bitraverse = bitraverseDefault
instance Bitraversable1 TwoFingerOddA where
bitraverse1 _ g (EmptyOddA a) = EmptyOddA <$> g a
bitraverse1 f g (SingleOddA a1 e1 a2) = SingleOddA <$> g a1 <.> f e1 <.> g a2
bitraverse1 f g (DeepOddA a0 pr m sf a1) = DeepOddA
<$> g a0
<.> bitraverse1 f g pr
<.> bitraverse1 (bitraverse1 f g) g m
<.> bitraverse1 f g sf
<.> g a1
data TwoFingerOddE e a
= SingleOddE e
| DeepOddE !(Digit e a) (TwoFingerOddA (Node e a) a) !(Digit e a)
deriving (Generic)
instance Show2 TwoFingerOddE where
liftShowsPrec2 f _ g _ d = go (d > 10)
where
go paren tree = showParen paren $ case unconsOddE tree of
Left e -> showString "singletonOddE " . f 11 e
Right ((e, a), tree')
-> showString "consOddE "
. f 11 e . showString " "
. g 11 a . showString " "
. go True tree'
instance (Show e) => Show1 (TwoFingerOddE e) where
liftShowsPrec = liftShowsPrec2 showsPrec showList
instance (Show e, Show a) => Show (TwoFingerOddE e a) where
showsPrec = showsPrec2
instance Eq2 TwoFingerOddE where
liftEq2 f g as bs = case alignLeftOddEOddE as bs of
(aligned, rest) -> biall (uncurry f) (uncurry g) aligned && noMore rest
where
noMore :: Either (TwoFingerEvenA a b) (TwoFingerEvenA c d) -> Bool
noMore = either (isNothing . unconsEvenA) (isNothing . unconsEvenA)
instance (Eq e) => Eq1 (TwoFingerOddE e) where
liftEq = liftEq2 (==)
instance (Eq e, Eq a) => Eq (TwoFingerOddE e a) where
(==) = eq2
instance Functor (TwoFingerOddE e) where
fmap = bimap id
instance Foldable (TwoFingerOddE e) where
foldMap = bifoldMap mempty
instance Traversable (TwoFingerOddE e) where
traverse = bitraverse pure
instance Bifunctor TwoFingerOddE where
bimap = bimapDefault
instance Bifoldable TwoFingerOddE where
bifoldMap = bifoldMapDefault
instance Bitraversable TwoFingerOddE where
bitraverse f _ (SingleOddE e) = SingleOddE <$> f e
bitraverse f g (DeepOddE pr m sf) = DeepOddE <$> bitraverse f g pr <*> bitraverse (bitraverse f g) g m <*> bitraverse f g sf
instance (NFData e, NFData a) => NFData (TwoFingerOddE e a)
data TwoFingerEvenE e a
= EmptyEvenE
| SingleEvenE e a
| DeepEvenE !(Digit e a) (TwoFingerOddA (Node e a) a) !(Digit e a) a
deriving (Generic)
instance Show2 TwoFingerEvenE where
liftShowsPrec2 f _ g _ d = go (d > 10)
where
go paren tree = case unconsEvenE tree of
Nothing -> showString "mempty"
Just ((e, a), tree') -> showParen paren
$ showString "consEvenE "
. f 11 e
. showString " "
. g 11 a
. showString " "
. go True tree'
instance (Show e) => Show1 (TwoFingerEvenE e) where
liftShowsPrec = liftShowsPrec2 showsPrec showList
instance (Show e, Show a) => Show (TwoFingerEvenE e a) where
showsPrec = showsPrec2
instance Eq2 TwoFingerEvenE where
liftEq2 f g as bs = case alignLeftEvenEEvenE as bs of
(aligned, rest) -> biall (uncurry f) (uncurry g) aligned && noMore rest
where
noMore :: Either (TwoFingerEvenE a b) (TwoFingerEvenE c d) -> Bool
noMore = either (isNothing . unconsEvenE) (isNothing . unconsEvenE)
instance (Eq e) => Eq1 (TwoFingerEvenE e) where
liftEq = liftEq2 (==)
instance (Eq e, Eq a) => Eq (TwoFingerEvenE e a) where
(==) = eq2
instance (NFData e, NFData a) => NFData (TwoFingerEvenE e a)
instance Functor (TwoFingerEvenE e) where
fmap = fmapDefault
instance Foldable (TwoFingerEvenE e) where
foldMap = foldMapDefault
instance Traversable (TwoFingerEvenE e) where
traverse = bitraverse pure
instance Bifunctor TwoFingerEvenE where
bimap = bimapDefault
instance Bifoldable TwoFingerEvenE where
bifoldMap = bifoldMapDefault
instance Bitraversable TwoFingerEvenE where
bitraverse _ _ EmptyEvenE = pure EmptyEvenE
bitraverse f g (SingleEvenE e a) = SingleEvenE <$> f e <*> g a
bitraverse f g (DeepEvenE pr m sf a) = DeepEvenE
<$> bitraverse f g pr
<*> bitraverse (bitraverse f g) g m
<*> bitraverse f g sf
<*> g a
data TwoFingerEvenA e a
= EmptyEvenA
| SingleEvenA a e
| DeepEvenA a !(Digit e a) (TwoFingerOddA (Node e a) a) !(Digit e a)
deriving (Generic)
instance Show2 TwoFingerEvenA where
liftShowsPrec2 f _ g _ d = go (d > 10)
where
go paren tree = case unconsEvenA tree of
Nothing -> showString "mempty"
Just ((a, e), tree') -> showParen paren
$ showString "consEvenA "
. g 11 a . showString " "
. f 11 e . showString " "
. go True tree'
instance (Show e) => Show1 (TwoFingerEvenA e) where
liftShowsPrec = liftShowsPrec2 showsPrec showList
instance (Show e, Show a) => Show (TwoFingerEvenA e a) where
showsPrec = showsPrec2
instance Eq2 TwoFingerEvenA where
liftEq2 f g as bs = case alignLeftEvenAEvenA as bs of
(aligned, rest) -> biall (uncurry f) (uncurry g) aligned && noMore rest
where
noMore :: Either (TwoFingerEvenA a b) (TwoFingerEvenA c d) -> Bool
noMore = either (isNothing . unconsEvenA) (isNothing . unconsEvenA)
instance (Eq e) => Eq1 (TwoFingerEvenA e) where
liftEq = liftEq2 (==)
instance (Eq e, Eq a) => Eq (TwoFingerEvenA e a) where
(==) = eq2
instance (NFData e, NFData a) => NFData (TwoFingerEvenA e a)
instance Functor (TwoFingerEvenA e) where
fmap = fmapDefault
instance Foldable (TwoFingerEvenA e) where
foldMap = foldMapDefault
instance Traversable (TwoFingerEvenA e) where
traverse = bitraverse pure
instance Bifunctor TwoFingerEvenA where
bimap = bimapDefault
instance Bifoldable TwoFingerEvenA where
bifoldMap = bifoldMapDefault
instance Bitraversable TwoFingerEvenA where
bitraverse _ _ EmptyEvenA = pure EmptyEvenA
bitraverse f g (SingleEvenA a e) = SingleEvenA <$> g a <*> f e
bitraverse f g (DeepEvenA a pr m sf) = DeepEvenA
<$> g a
<*> bitraverse f g pr
<*> bitraverse (bitraverse f g) g m
<*> bitraverse f g sf
digitToTree :: Digit e a -> TwoFingerOddE e a
digitToTree (One e) = SingleOddE e
digitToTree (Two e1 a1 e2) = DeepOddE (One e1) (EmptyOddA a1) (One e2)
digitToTree (Three e1 a1 e2 a2 e3) =
DeepOddE (Two e1 a1 e2) (EmptyOddA a2) (One e3)
digitToTree (Four e1 a1 e2 a2 e3 a3 e4) =
DeepOddE (Two e1 a1 e2) (EmptyOddA a2) (Two e3 a3 e4)
digitCons :: e -> a -> Digit e a -> Either (Digit e a, a, Node e a) (Digit e a)
digitCons e1 a1 (One e2) = Right $ Two e1 a1 e2
digitCons e1 a1 (Two e2 a2 e3) = Right $ Three e1 a1 e2 a2 e3
digitCons e1 a1 (Three e2 a2 e3 a3 e4) = Right $ Four e1 a1 e2 a2 e3 a3 e4
digitCons e1 a1 (Four e2 a2 e3 a3 e4 a4 e5) =
Left (Two e1 a1 e2, a2, Node3 e3 a3 e4 a4 e5)
digitSnoc :: Digit e a -> a -> e -> Either (Node e a, a, Digit e a) (Digit e a)
digitSnoc (One e1) a1 e2 = Right $ Two e1 a1 e2
digitSnoc (Two e1 a1 e2) a2 e3 = Right $ Three e1 a1 e2 a2 e3
digitSnoc (Three e1 a1 e2 a2 e3) a3 e4 = Right $ Four e1 a1 e2 a2 e3 a3 e4
digitSnoc (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 =
Left (Node3 e1 a1 e2 a2 e3, a3, Two e4 a4 e5)
digitUncons :: Digit e a -> (e, Maybe (a, Digit e a))
digitUncons (One e1) = (e1, Nothing)
digitUncons (Two e1 a1 e2) = (e1, Just (a1, One e2))
digitUncons (Three e1 a1 e2 a2 e3) = (e1, Just (a1, Two e2 a2 e3))
digitUncons (Four e1 a1 e2 a2 e3 a3 e4) =
(e1, Just (a1, Three e2 a2 e3 a3 e4))
digitUnsnoc :: Digit e a -> (Maybe (Digit e a, a), e)
digitUnsnoc (One e1) = (Nothing, e1)
digitUnsnoc (Two e1 a1 e2) = (Just (One e1, a1), e2)
digitUnsnoc (Three e1 a1 e2 a2 e3) = (Just (Two e1 a1 e2, a2), e3)
digitUnsnoc (Four e1 a1 e2 a2 e3 a3 e4) =
(Just (Three e1 a1 e2 a2 e3, a3), e4)
nodeToDigit :: Node e a -> Digit e a
nodeToDigit (Node2 e1 a1 e2) = Two e1 a1 e2
nodeToDigit (Node3 e1 a1 e2 a2 e3) = Three e1 a1 e2 a2 e3
rotl :: TwoFingerOddA (Node e a) a -> Digit e a -> TwoFingerEvenA e a
rotl m sf = case unconsOddA m of
Left a -> halfconsOddE a $ digitToTree sf
Right ((a, e), m') -> DeepEvenA a (nodeToDigit e) m' sf
rotr :: Digit e a -> TwoFingerOddA (Node e a) a -> TwoFingerEvenE e a
rotr pr m = case unsnocOddA m of
Left a -> halfsnocOddE (digitToTree pr) a
Right (m', (e, a)) -> DeepEvenE pr m' (nodeToDigit e) a
consOddA :: a -> e -> TwoFingerOddA e a -> TwoFingerOddA e a
consOddA a e = halfconsEvenE a . halfconsOddA e
snocOddA :: TwoFingerOddA e a -> e -> a -> TwoFingerOddA e a
snocOddA tree e = halfsnocEvenA (halfsnocOddA tree e)
unconsOddA :: TwoFingerOddA e a -> Either a ((a, e), TwoFingerOddA e a)
unconsOddA tree = case second halfunconsEvenE $ halfunconsOddA tree of
(a, Nothing) -> Left a
(a, Just (e, tree')) -> Right ((a, e), tree')
unsnocOddA :: TwoFingerOddA e a -> Either a (TwoFingerOddA e a, (e, a))
unsnocOddA tree = case first halfunsnocEvenA $ halfunsnocOddA tree of
(Nothing, a) -> Left a
(Just (tree', e), a) -> Right (tree', (e, a))
halfconsOddA :: e -> TwoFingerOddA e a -> TwoFingerEvenE e a
halfconsOddA e (EmptyOddA a) = SingleEvenE e a
halfconsOddA e (SingleOddA a1 e1 a2) =
DeepEvenE (One e) (EmptyOddA a1) (One e1) a2
halfconsOddA e (DeepOddA a0 pr m sf a1) = case digitCons e a0 pr of
Right pr' -> DeepEvenE pr' m sf a1
Left (pr', a', node) -> DeepEvenE pr' (consOddA a' node m) sf a1
halfsnocOddA :: TwoFingerOddA e a -> e -> TwoFingerEvenA e a
halfsnocOddA (EmptyOddA a) e = SingleEvenA a e
halfsnocOddA (SingleOddA a e1 a1) e2 =
DeepEvenA a (One e1) (EmptyOddA a1) (One e2)
halfsnocOddA (DeepOddA a0 pr m sf a1) e = case digitSnoc sf a1 e of
Right sf' -> DeepEvenA a0 pr m sf'
Left (node, a', sf') -> DeepEvenA a0 pr (snocOddA m node a') sf'
halfunconsOddA :: TwoFingerOddA e a -> (a, TwoFingerEvenE e a)
halfunconsOddA (EmptyOddA a) = (a, EmptyEvenE)
halfunconsOddA (SingleOddA a e1 a1) = (a, SingleEvenE e1 a1)
halfunconsOddA (DeepOddA a0 pr m sf a1) = (a0, DeepEvenE pr m sf a1)
halfunsnocOddA :: TwoFingerOddA e a -> (TwoFingerEvenA e a, a)
halfunsnocOddA (EmptyOddA a) = (EmptyEvenA, a)
halfunsnocOddA (SingleOddA a1 e1 a2) = (SingleEvenA a1 e1, a2)
halfunsnocOddA (DeepOddA a0 pr m sf a1) = (DeepEvenA a0 pr m sf, a1)
consOddE :: e -> a -> TwoFingerOddE e a -> TwoFingerOddE e a
consOddE e a = halfconsEvenA e . halfconsOddE a
snocOddE :: TwoFingerOddE e a -> a -> e -> TwoFingerOddE e a
snocOddE tree e = halfsnocEvenE (halfsnocOddE tree e)
unconsOddE :: TwoFingerOddE e a -> Either e ((e, a), TwoFingerOddE e a)
unconsOddE tree = case second halfunconsEvenA $ halfunconsOddE tree of
(e, Nothing) -> Left e
(e, Just (a, tree')) -> Right ((e, a), tree')
unsnocOddE :: TwoFingerOddE e a -> Either e (TwoFingerOddE e a, (a, e))
unsnocOddE tree = case first halfunsnocEvenE $ halfunsnocOddE tree of
(Nothing, e) -> Left e
(Just (tree', a), e) -> Right (tree', (a, e))
halfconsOddE :: a -> TwoFingerOddE e a -> TwoFingerEvenA e a
halfconsOddE a (SingleOddE e) = SingleEvenA a e
halfconsOddE a (DeepOddE pr m sf) = DeepEvenA a pr m sf
halfsnocOddE :: TwoFingerOddE e a -> a -> TwoFingerEvenE e a
halfsnocOddE (SingleOddE e) a = SingleEvenE e a
halfsnocOddE (DeepOddE pr m sf) a = DeepEvenE pr m sf a
halfunconsOddE :: TwoFingerOddE e a -> (e, TwoFingerEvenA e a)
halfunconsOddE (SingleOddE e) = (e, EmptyEvenA)
halfunconsOddE (DeepOddE pr m sf) = case digitUncons pr of
(e, Nothing) -> (e, rotl m sf)
(e, Just (a, pr')) -> (e, DeepEvenA a pr' m sf)
halfunsnocOddE :: TwoFingerOddE e a -> (TwoFingerEvenE e a, e)
halfunsnocOddE (SingleOddE e) = (EmptyEvenE, e)
halfunsnocOddE (DeepOddE pr m sf) = case digitUnsnoc sf of
(Nothing, e) -> (rotr pr m, e)
(Just (sf', a), e) -> (DeepEvenE pr m sf' a, e)
consEvenE :: e -> a -> TwoFingerEvenE e a -> TwoFingerEvenE e a
consEvenE e a = halfconsOddA e . halfconsEvenE a
snocEvenE :: TwoFingerEvenE e a -> e -> a -> TwoFingerEvenE e a
snocEvenE tree e = halfsnocOddE (halfsnocEvenE tree e)
unconsEvenE :: TwoFingerEvenE e a -> Maybe ((e, a), TwoFingerEvenE e a)
unconsEvenE tree = case second halfunconsOddA <$> halfunconsEvenE tree of
Nothing -> Nothing
Just (e, (a, tree')) -> Just ((e, a), tree')
unsnocEvenE :: TwoFingerEvenE e a -> Maybe (TwoFingerEvenE e a, (e, a))
unsnocEvenE tree = case first halfunsnocOddE <$> halfunsnocEvenE tree of
Nothing -> Nothing
Just ((tree', a), e) -> Just (tree', (a, e))
halfconsEvenE :: a -> TwoFingerEvenE e a -> TwoFingerOddA e a
halfconsEvenE a EmptyEvenE = EmptyOddA a
halfconsEvenE a0 (SingleEvenE e1 a1) = SingleOddA a0 e1 a1
halfconsEvenE a0 (DeepEvenE pr m sf a1) = DeepOddA a0 pr m sf a1
halfsnocEvenE :: TwoFingerEvenE e a -> e -> TwoFingerOddE e a
halfsnocEvenE EmptyEvenE e = SingleOddE e
halfsnocEvenE (SingleEvenE e1 a1) e2 =
DeepOddE (One e1) (EmptyOddA a1) (One e2)
halfsnocEvenE (DeepEvenE pr m sf a) e = case digitSnoc sf a e of
Right sf' -> DeepOddE pr m sf'
Left (node, a', sf') -> DeepOddE pr (snocOddA m node a') sf'
halfunconsEvenE :: TwoFingerEvenE e a -> Maybe (e, TwoFingerOddA e a)
halfunconsEvenE EmptyEvenE = Nothing
halfunconsEvenE (SingleEvenE e a) = Just (e, EmptyOddA a)
halfunconsEvenE (DeepEvenE pr m sf a1) = Just $ case digitUncons pr of
(e, Nothing) -> (e, halfsnocEvenA (rotl m sf) a1)
(e, Just (a0, pr')) -> (e, DeepOddA a0 pr' m sf a1)
halfunsnocEvenE :: TwoFingerEvenE e a -> Maybe (TwoFingerOddE e a, a)
halfunsnocEvenE EmptyEvenE = Nothing
halfunsnocEvenE (SingleEvenE e a) = Just (SingleOddE e, a)
halfunsnocEvenE (DeepEvenE pr m sf a) = Just (DeepOddE pr m sf, a)
consEvenA :: a -> e -> TwoFingerEvenA e a -> TwoFingerEvenA e a
consEvenA a e = halfconsOddE a . halfconsEvenA e
snocEvenA :: TwoFingerEvenA e a -> a -> e -> TwoFingerEvenA e a
snocEvenA tree a = halfsnocOddA (halfsnocEvenA tree a)
unconsEvenA :: TwoFingerEvenA e a -> Maybe ((a, e), TwoFingerEvenA e a)
unconsEvenA tree = case second halfunconsOddE <$> halfunconsEvenA tree of
Nothing -> Nothing
Just (a, (e, tree')) -> Just ((a, e), tree')
unsnocEvenA :: TwoFingerEvenA e a -> Maybe (TwoFingerEvenA e a, (a, e))
unsnocEvenA tree = case first halfunsnocOddA <$> halfunsnocEvenA tree of
Nothing -> Nothing
Just ((tree', e), a) -> Just (tree', (e, a))
halfconsEvenA :: e -> TwoFingerEvenA e a -> TwoFingerOddE e a
halfconsEvenA e EmptyEvenA = SingleOddE e
halfconsEvenA e1 (SingleEvenA a1 e2) =
DeepOddE (One e1) (EmptyOddA a1) (One e2)
halfconsEvenA e (DeepEvenA a pr m sf) = case digitCons e a pr of
Right pr' -> DeepOddE pr' m sf
Left (pr', a', node) -> DeepOddE pr' (consOddA a' node m) sf
halfsnocEvenA :: TwoFingerEvenA e a -> a -> TwoFingerOddA e a
halfsnocEvenA EmptyEvenA a = EmptyOddA a
halfsnocEvenA (SingleEvenA a1 e1) a2 = SingleOddA a1 e1 a2
halfsnocEvenA (DeepEvenA a0 pr m sf) a = DeepOddA a0 pr m sf a
halfunconsEvenA :: TwoFingerEvenA e a -> Maybe (a, TwoFingerOddE e a)
halfunconsEvenA EmptyEvenA = Nothing
halfunconsEvenA (SingleEvenA a e) = Just (a, SingleOddE e)
halfunconsEvenA (DeepEvenA a pr m sf) = Just (a, DeepOddE pr m sf)
halfunsnocEvenA :: TwoFingerEvenA e a -> Maybe (TwoFingerOddA e a, e)
halfunsnocEvenA EmptyEvenA = Nothing
halfunsnocEvenA (SingleEvenA a e) = Just (EmptyOddA a, e)
halfunsnocEvenA (DeepEvenA a1 pr m sf) = case digitUnsnoc sf of
(Nothing, e) -> Just (halfconsEvenE a1 (rotr pr m), e)
(Just (sf', a2), e) -> Just (DeepOddA a1 pr m sf' a2, e)
joinOddA :: TwoFingerOddA (TwoFingerOddE e a) (TwoFingerOddA e a) -> TwoFingerOddA e a
joinOddA (halfunconsOddA -> (a, tree)) = appendOddAEvenE a (joinEvenE tree)
joinOddE :: TwoFingerOddE (TwoFingerOddE e a) (TwoFingerOddA e a) -> TwoFingerOddE e a
joinOddE (halfunconsOddE -> (e, tree)) = appendOddEEvenA e (joinEvenA tree)
joinEvenA :: TwoFingerEvenA (TwoFingerOddE e a) (TwoFingerOddA e a) -> TwoFingerEvenA e a
joinEvenA tree = case halfunconsEvenA tree of
Nothing -> mempty
Just (a, tree') -> appendOddAOddE a (joinOddE tree')
joinEvenE :: TwoFingerEvenE (TwoFingerOddE e a) (TwoFingerOddA e a) -> TwoFingerEvenE e a
joinEvenE tree = case halfunconsEvenE tree of
Nothing -> mempty
Just (e, tree') -> appendOddEOddA e (joinOddA tree')
instance Monad (TwoFingerOddA e) where
tree >>= f = joinOddA $ bimap singletonOddE f tree
instance Bind (TwoFingerOddA e) where
(>>-) = (>>=)
instance Applicative (TwoFingerOddA e) where
pure = singletonOddA
(<*>) = ap
instance Apply (TwoFingerOddA e) where
(<.>) = (<*>)
singletonOddA :: a -> TwoFingerOddA e a
singletonOddA = EmptyOddA
unitOddA :: (Monoid a, Semigroup a) => e -> TwoFingerOddA e a
unitOddA a = consOddA mempty a mempty
onlyOddA :: TwoFingerOddA e a -> Maybe a
onlyOddA (EmptyOddA a) = Just a
onlyOddA _ = Nothing
interleavingOddA :: e -> NonEmpty a -> TwoFingerOddA e a
interleavingOddA sep (a :| as) =
foldl' (flip snocOddA sep) (singletonOddA a) as
singletonOddE :: e -> TwoFingerOddE e a
singletonOddE = SingleOddE
instance (Semigroup a) => Semigroup (TwoFingerOddA e a) where
(<>) = appendOddA0
instance (Monoid a, Semigroup a) => Monoid (TwoFingerOddA e a) where
mempty = singletonOddA mempty
mappend = (<>)
appendOddA0
:: (Semigroup a)
=> TwoFingerOddA e a
-> TwoFingerOddA e a
-> TwoFingerOddA e a
appendOddA0 (EmptyOddA a) (halfunconsOddA -> (a', m)) =
halfconsEvenE (a <> a') m
appendOddA0 (SingleOddA a1 e1 a) (halfunconsOddA -> (a', m)) =
consOddA a1 e1 $ halfconsEvenE (a <> a') m
appendOddA0 (halfunsnocOddA -> (m, a)) (EmptyOddA a') =
halfsnocEvenA m (a <> a')
appendOddA0 (halfunsnocOddA -> (m, a)) (SingleOddA a' a1 e1) =
snocOddA (halfsnocEvenA m (a <> a')) a1 e1
appendOddA0 (DeepOddA aa1 pr1 m1 sf1 az1) (DeepOddA aa2 pr2 m2 sf2 az2) =
DeepOddA aa1 pr1 (addDigits0 m1 sf1 (az1 <> aa2) pr2 m2) sf2 az2
addDigits0
:: TwoFingerOddA (Node e a) a
-> Digit e a -> a -> Digit e a
-> TwoFingerOddA (Node e a) a
-> TwoFingerOddA (Node e a) a
addDigits0 m1 (One e1) a1 (One e2) m2 =
appendOddA1 m1 (Node2 e1 a1 e2) m2
addDigits0 m1 (One e1) a1 (Two e2 a2 e3) m2 =
appendOddA1 m1 (Node3 e1 a1 e2 a2 e3) m2
addDigits0 m1 (One e1) a1 (Three e2 a2 e3 a3 e4) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node2 e3 a3 e4) m2
addDigits0 m1 (One e1) a1 (Four e2 a2 e3 a3 e4 a4 e5) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) m2
addDigits0 m1 (Two e1 a1 e2) a2 (One e3) m2 =
appendOddA1 m1 (Node3 e1 a1 e2 a2 e3) m2
addDigits0 m1 (Two e1 a1 e2) a2 (Two e3 a3 e4) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node2 e3 a3 e4) m2
addDigits0 m1 (Two e1 a1 e2) a2 (Three e3 a3 e4 a4 e5) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) m2
addDigits0 m1 (Two e1 a1 e2) a2 (Four e3 a3 e4 a4 e5 a5 e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits0 m1 (Three e1 a1 e2 a2 e3) a3 (One e4) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node2 e3 a3 e4) m2
addDigits0 m1 (Three e1 a1 e2 a2 e3) a3 (Two e4 a4 e5) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) m2
addDigits0 m1 (Three e1 a1 e2 a2 e3) a3 (Three e4 a4 e5 a5 e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits0 m1 (Three e1 a1 e2 a2 e3) a3 (Four e4 a4 e5 a5 e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits0 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 (One e5) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) m2
addDigits0 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 (Two e5 a5 e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits0 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 (Three e5 a5 e6 a6 e7) m2 =
appendOddA3 m1 (Node2 e1 a1 e2) a2 (Node2 e3 a3 e4) a4
(Node3 e5 a5 e6 a6 e7) m2
addDigits0 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 (Four e5 a5 e6 a6 e7 a7 e8) m2 =
appendOddA3 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
appendOddA1 :: TwoFingerOddA e a -> e -> TwoFingerOddA e a -> TwoFingerOddA e a
appendOddA1 (EmptyOddA a) e m = consOddA a e m
appendOddA1 (SingleOddA a1 e1 a2) e2 m = consOddA a1 e1 $ consOddA a2 e2 m
appendOddA1 m e (EmptyOddA a) = snocOddA m e a
appendOddA1 m e1 (SingleOddA a1 e2 a2) = snocOddA (snocOddA m e1 a1) e2 a2
appendOddA1 (DeepOddA a0 pr1 m1 sf1 a1) e (DeepOddA a2 pr2 m2 sf2 az) =
DeepOddA a0 pr1 (addDigits1 m1 sf1 a1 e a2 pr2 m2) sf2 az
addDigits1
:: TwoFingerOddA (Node e a) a
-> Digit e a -> a -> e -> a -> Digit e a
-> TwoFingerOddA (Node e a) a
-> TwoFingerOddA (Node e a) a
addDigits1 m1 (One e1) a1 e2 a2 (One e3) m2 =
appendOddA1 m1 (Node3 e1 a1 e2 a2 e3) m2
addDigits1 m1 (One e1) a1 e2 a2 (Two e3 a3 e4) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node2 e3 a3 e4) m2
addDigits1 m1 (One e1) a1 e2 a2 (Three e3 a3 e4 a4 e5) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) m2
addDigits1 m1 (One e1) a1 e2 a2 (Four e3 a3 e4 a4 e5 a5 e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits1 m1 (Two e1 a1 e2) a2 e3 a3 (One e4) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node2 e3 a3 e4) m2
addDigits1 m1 (Two e1 a1 e2) a2 e3 a3 (Two e4 a4 e5) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) m2
addDigits1 m1 (Two e1 a1 e2) a2 e3 a3 (Three e4 a4 e5 a5 e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits1 m1 (Two e1 a1 e2) a2 e3 a3 (Four e4 a4 e5 a5 e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits1 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 (One e5) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) m2
addDigits1 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 (Two e5 a5 e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits1 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 (Three e5 a5 e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits1 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 (Four e5 a5 e6 a6 e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits1 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 (One e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits1 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 (Two e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits1 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 (Three e6 a6 e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits1 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5
(Four e6 a6 e7 a7 e8 a8 e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
appendOddA2
:: TwoFingerOddA e a
-> e -> a -> e
-> TwoFingerOddA e a
-> TwoFingerOddA e a
appendOddA2 (EmptyOddA a1) e1 a2 e2 m =
consOddA a1 e1 $ consOddA a2 e2 m
appendOddA2 (SingleOddA a1 e1 a2) e2 a3 e3 m =
consOddA a1 e1 $ consOddA a2 e2 $ consOddA a3 e3 m
appendOddA2 m e1 a1 e2 (EmptyOddA a2) =
snocOddA (snocOddA m e1 a1) e2 a2
appendOddA2 m e1 a1 e2 (SingleOddA a2 e3 a3) =
snocOddA (snocOddA (snocOddA m e1 a1) e2 a2) e3 a3
appendOddA2 (DeepOddA a0 pr1 m1 sf1 a1) e1 a2 e2 (DeepOddA a3 pr2 m2 sf2 az) =
DeepOddA a0 pr1 (addDigits2 m1 sf1 a1 e1 a2 e2 a3 pr2 m2) sf2 az
addDigits2
:: TwoFingerOddA (Node e a) a
-> Digit e a -> a -> e -> a -> e -> a -> Digit e a
-> TwoFingerOddA (Node e a) a
-> TwoFingerOddA (Node e a) a
addDigits2 m1 (One e1) a1 e2 a2 e3 a3 (One e4) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node2 e3 a3 e4) m2
addDigits2 m1 (One e1) a1 e2 a2 e3 a3 (Two e4 a4 e5) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) m2
addDigits2 m1 (One e1) a1 e2 a2 e3 a3 (Three e4 a4 e5 a5 e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits2 m1 (One e1) a1 e2 a2 e3 a3 (Four e4 a4 e5 a5 e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits2 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 (One e5) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) m2
addDigits2 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 (Two e5 a5 e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits2 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 (Three e5 a5 e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits2 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 (Four e5 a5 e6 a6 e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits2 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 (One e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits2 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 (Two e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits2 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 (Three e6 a6 e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits2 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5
(Four e6 a6 e7 a7 e8 a8 e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
addDigits2 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 (One e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits2 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 (Two e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits2 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6
(Three e7 a7 e8 a8 e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
addDigits2 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6
(Four e7 a7 e8 a8 e9 a9 e10) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node2 e7 a7 e8) a8 (Node2 e9 a9 e10) m2
appendOddA3
:: TwoFingerOddA e a
-> e -> a -> e -> a -> e
-> TwoFingerOddA e a
-> TwoFingerOddA e a
appendOddA3 (EmptyOddA a1) e1 a2 e2 a3 e3 m =
consOddA a1 e1 $ consOddA a2 e2 $ consOddA a3 e3 m
appendOddA3 m e1 a1 e2 a2 e3 (EmptyOddA a3) =
snocOddA (snocOddA (snocOddA m e1 a1) e2 a2) e3 a3
appendOddA3 (SingleOddA a1 e1 a2) e2 a3 e3 a4 e4 m =
consOddA a1 e1 $ consOddA a2 e2 $ consOddA a3 e3 $ consOddA a4 e4 m
appendOddA3 m e1 a1 e2 a2 e3 (SingleOddA a3 e4 a4) =
snocOddA (snocOddA (snocOddA (snocOddA m e1 a1) e2 a2) e3 a3) e4 a4
appendOddA3 (DeepOddA a0 pr1 m1 sf1 a1) e1 a2 e2 a3 e3
(DeepOddA a4 pr2 m2 sf2 az) =
DeepOddA a0 pr1 (addDigits3 m1 sf1 a1 e1 a2 e2 a3 e3 a4 pr2 m2) sf2 az
addDigits3
:: TwoFingerOddA (Node e a) a
-> Digit e a -> a -> e -> a -> e -> a -> e -> a -> Digit e a
-> TwoFingerOddA (Node e a) a
-> TwoFingerOddA (Node e a) a
addDigits3 m1 (One e1) a1 e2 a2 e3 a3 e4 a4 (One e5) m2 =
appendOddA2 m1 (Node2 e1 a1 e2) a2 (Node3 e3 a3 e4 a4 e5) m2
addDigits3 m1 (One e1) a1 e2 a2 e3 a3 e4 a4 (Two e5 a5 e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits3 m1 (One e1) a1 e2 a2 e3 a3 e4 a4 (Three e5 a5 e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits3 m1 (One e1) a1 e2 a2 e3 a3 e4 a4 (Four e5 a5 e6 a6 e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits3 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 e5 a5 (One e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits3 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 e5 a5 (Two e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits3 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 e5 a5 (Three e6 a6 e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits3 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 e5 a5
(Four e6 a6 e7 a7 e8 a8 e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
addDigits3 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 e6 a6 (One e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits3 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 e6 a6 (Two e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits3 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 e6 a6
(Three e7 a7 e8 a8 e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
addDigits3 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 e6 a6
(Four e7 a7 e8 a8 e9 a9 e10) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node2 e7 a7 e8) a8 (Node2 e9 a9 e10) m2
addDigits3 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 e7 a7 (One e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits3 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 e7 a7
(Two e8 a8 e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
addDigits3 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 e7 a7
(Three e8 a8 e9 a9 e10) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node2 e7 a7 e8) a8 (Node2 e9 a9 e10) m2
addDigits3 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 e7 a7
(Four e8 a8 e9 a9 e10 a10 e11) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node2 e7 a7 e8) a8 (Node3 e9 a9 e10 a10 e11) m2
appendOddA4
:: TwoFingerOddA e a
-> e -> a -> e -> a -> e -> a -> e
-> TwoFingerOddA e a
-> TwoFingerOddA e a
appendOddA4 (EmptyOddA a1) e1 a2 e2 a3 e3 a4 e4 m =
consOddA a1 e1 $ consOddA a2 e2 $ consOddA a3 e3 $ consOddA a4 e4 m
appendOddA4 m e1 a1 e2 a2 e3 a3 e4 (EmptyOddA a4) =
snocOddA (snocOddA (snocOddA (snocOddA m e1 a1) e2 a2) e3 a3) e4 a4
appendOddA4 (SingleOddA a1 e1 a2) e2 a3 e3 a4 e4 a5 e5 m =
consOddA a1 e1 $ consOddA a2 e2 $ consOddA a3 e3 $ consOddA a4 e4 $
consOddA a5 e5 m
appendOddA4 m e1 a1 e2 a2 e3 a3 e4 (SingleOddA a4 e5 a5) =
snocOddA (snocOddA (snocOddA (snocOddA (snocOddA m e1 a1) e2 a2) e3 a3) e4 a4) e5 a5
appendOddA4 (DeepOddA a0 pr1 m1 sf1 a1) e1 a2 e2 a3 e3 a4 e4
(DeepOddA a5 pr2 m2 sf2 an) =
DeepOddA a0 pr1 (addDigits4 m1 sf1 a1 e1 a2 e2 a3 e3 a4 e4 a5 pr2 m2) sf2 an
addDigits4
:: TwoFingerOddA (Node e a) a
-> Digit e a -> a -> e -> a -> e -> a -> e -> a -> e -> a -> Digit e a
-> TwoFingerOddA (Node e a) a
-> TwoFingerOddA (Node e a) a
addDigits4 m1 (One e1) a1 e2 a2 e3 a3 e4 a4 e5 a5 (One e6) m2 =
appendOddA2 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) m2
addDigits4 m1 (One e1) a1 e2 a2 e3 a3 e4 a4 e5 a5 (Two e6 a6 e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits4 m1 (One e1) a1 e2 a2 e3 a3 e4 a4 e5 a5 (Three e6 a6 e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits4 m1 (One e1) a1 e2 a2 e3 a3 e4 a4 e5 a5
(Four e6 a6 e7 a7 e8 a8 e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
addDigits4 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 e5 a5 e6 a6 (One e7) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node2 e6 a6 e7) m2
addDigits4 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 e5 a5 e6 a6 (Two e7 a7 e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits4 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 e5 a5 e6 a6
(Three e7 a7 e8 a8 e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
addDigits4 m1 (Two e1 a1 e2) a2 e3 a3 e4 a4 e5 a5 e6 a6
(Four e7 a7 e8 a8 e9 a9 e10) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node2 e7 a7 e8) a8 (Node2 e9 a9 e10) m2
addDigits4 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 e6 a6 e7 a7 (One e8) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node2 e4 a4 e5) a5
(Node3 e6 a6 e7 a7 e8) m2
addDigits4 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 e6 a6 e7 a7
(Two e8 a8 e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
addDigits4 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 e6 a6 e7 a7
(Three e8 a8 e9 a9 e10) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node2 e7 a7 e8) a8 (Node2 e9 a9 e10) m2
addDigits4 m1 (Three e1 a1 e2 a2 e3) a3 e4 a4 e5 a5 e6 a6 e7 a7
(Four e8 a8 e9 a9 e10 a10 e11) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node2 e7 a7 e8) a8 (Node3 e9 a9 e10 a10 e11) m2
addDigits4 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 e7 a7 e8 a8
(One e9) m2 =
appendOddA3 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) m2
addDigits4 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 e7 a7 e8 a8
(Two e9 a9 e10) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node2 e7 a7 e8) a8 (Node2 e9 a9 e10) m2
addDigits4 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 e7 a7 e8 a8
(Three e9 a9 e10 a10 e11) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node2 e7 a7 e8) a8 (Node3 e9 a9 e10 a10 e11) m2
addDigits4 m1 (Four e1 a1 e2 a2 e3 a3 e4) a4 e5 a5 e6 a6 e7 a7 e8 a8
(Four e9 a9 e10 a10 e11 a11 e12) m2 =
appendOddA4 m1 (Node3 e1 a1 e2 a2 e3) a3 (Node3 e4 a4 e5 a5 e6) a6
(Node3 e7 a7 e8 a8 e9) a9 (Node3 e10 a10 e11 a11 e12) m2
instance Semigroup (TwoFingerEvenE e a) where
(<>) = appendEvenE
instance Alt (TwoFingerEvenE e) where
(<!>) = appendEvenE
instance Monoid (TwoFingerEvenE e a) where
mempty = EmptyEvenE
mappend = (<>)
instance Plus (TwoFingerEvenE e) where
zero = EmptyEvenE
appendEvenE :: TwoFingerEvenE e a -> TwoFingerEvenE e a -> TwoFingerEvenE e a
appendEvenE EmptyEvenE m = m
appendEvenE m EmptyEvenE = m
appendEvenE (SingleEvenE e a) m = consEvenE e a m
appendEvenE m (SingleEvenE e a) = snocEvenE m e a
appendEvenE (DeepEvenE pr1 m1 sf1 b1) (DeepEvenE pr2 m2 sf2 b2) =
DeepEvenE pr1 (addDigits0 m1 sf1 b1 pr2 m2) sf2 b2
instance Semigroup (TwoFingerEvenA e a) where
(<>) = appendEvenA
instance Alt (TwoFingerEvenA e) where
(<!>) = appendEvenA
instance Monoid (TwoFingerEvenA e a) where
mempty = EmptyEvenA
mappend = (<>)
instance Plus (TwoFingerEvenA e) where
zero = EmptyEvenA
appendEvenA :: TwoFingerEvenA e a -> TwoFingerEvenA e a -> TwoFingerEvenA e a
appendEvenA EmptyEvenA m = m
appendEvenA m EmptyEvenA = m
appendEvenA (SingleEvenA a e) m = consEvenA a e m
appendEvenA m (SingleEvenA a e) = snocEvenA m a e
appendEvenA (DeepEvenA a1 pr1 m1 sf1) (DeepEvenA a2 pr2 m2 sf2) =
DeepEvenA a1 pr1 (addDigits0 m1 sf1 a2 pr2 m2) sf2
appendOddAEvenE :: TwoFingerOddA e a -> TwoFingerEvenE e a -> TwoFingerOddA e a
appendOddAEvenE (EmptyOddA a) m = halfconsEvenE a m
appendOddAEvenE m EmptyEvenE = m
appendOddAEvenE (SingleOddA a1 e a2) m = consOddA a1 e $ halfconsEvenE a2 m
appendOddAEvenE m (SingleEvenE e a) = snocOddA m e a
appendOddAEvenE (DeepOddA a1 pr1 m1 sf1 a2) (DeepEvenE pr2 m2 sf2 a3) =
DeepOddA a1 pr1 (addDigits0 m1 sf1 a2 pr2 m2) sf2 a3
appendEvenAOddA :: TwoFingerEvenA e a -> TwoFingerOddA e a -> TwoFingerOddA e a
appendEvenAOddA EmptyEvenA m = m
appendEvenAOddA m (EmptyOddA a) = halfsnocEvenA m a
appendEvenAOddA (SingleEvenA a e) m = consOddA a e m
appendEvenAOddA m (SingleOddA a1 e1 a2) = snocOddA (halfsnocEvenA m a1) e1 a2
appendEvenAOddA (DeepEvenA a1 pr1 m1 sf1) (DeepOddA a2 pr2 m2 sf2 b) =
DeepOddA a1 pr1 (addDigits0 m1 sf1 a2 pr2 m2) sf2 b
appendOddAOddE :: TwoFingerOddA e a -> TwoFingerOddE e a -> TwoFingerEvenA e a
appendOddAOddE (EmptyOddA a) m = halfconsOddE a m
appendOddAOddE (SingleOddA a1 e a2) m = consEvenA a1 e $ halfconsOddE a2 m
appendOddAOddE m (SingleOddE e) = halfsnocOddA m e
appendOddAOddE (DeepOddA a1 pr1 m1 sf1 a2) (DeepOddE pr2 m2 sf2) =
DeepEvenA a1 pr1 (addDigits0 m1 sf1 a2 pr2 m2) sf2
appendOddEOddA :: TwoFingerOddE e a -> TwoFingerOddA e a -> TwoFingerEvenE e a
appendOddEOddA m (EmptyOddA a) = halfsnocOddE m a
appendOddEOddA (SingleOddE e) m = halfconsOddA e m
appendOddEOddA m (SingleOddA a1 e a2) = snocEvenE (halfsnocOddE m a1) e a2
appendOddEOddA (DeepOddE pr1 m1 sf1) (DeepOddA a1 pr2 m2 sf2 a2) =
DeepEvenE pr1 (addDigits0 m1 sf1 a1 pr2 m2) sf2 a2
appendOddEEvenA :: TwoFingerOddE e a -> TwoFingerEvenA e a -> TwoFingerOddE e a
appendOddEEvenA m EmptyEvenA = m
appendOddEEvenA (SingleOddE e) m = halfconsEvenA e m
appendOddEEvenA m (SingleEvenA a e) = snocOddE m a e
appendOddEEvenA (DeepOddE pr1 m1 sf1) (DeepEvenA a pr2 m2 sf2) =
DeepOddE pr1 (addDigits0 m1 sf1 a pr2 m2) sf2
appendEvenEOddE :: TwoFingerEvenE e a -> TwoFingerOddE e a -> TwoFingerOddE e a
appendEvenEOddE EmptyEvenE m = m
appendEvenEOddE (SingleEvenE a e) m = consOddE a e m
appendEvenEOddE m (SingleOddE e) = halfsnocEvenE m e
appendEvenEOddE (DeepEvenE pr1 m1 sf1 a) (DeepOddE pr2 m2 sf2) =
DeepOddE pr1 (addDigits0 m1 sf1 a pr2 m2) sf2
genDigit :: Gen e -> Gen a -> Gen (Digit e a)
genDigit e a = QC.oneof
[ One <$> e
, Two <$> e <*> a <*> e
, Three <$> e <*> a <*> e <*> a <*> e
, Four <$> e <*> a <*> e <*> a <*> e <*> a <*> e
]
genNode :: Gen e -> Gen a -> Gen (Node e a)
genNode e a = QC.oneof
[ Node2 <$> e <*> a <*> e
, Node3 <$> e <*> a <*> e <*> a <*> e
]
genOddA :: Gen e -> Gen a -> Int -> Gen (TwoFingerOddA e a)
genOddA e a 1 = SingleOddA <$> a <*> e <*> a
genOddA _ a n | n <= 0 = EmptyOddA <$> a
genOddA e a n =
DeepOddA <$> a <*> genDigit e a <*> genOddA (genNode e a) a (n 2) <*> genDigit e a <*> a
shrinkOddA :: TwoFingerOddA e a -> [TwoFingerOddA e a]
shrinkOddA = \case
EmptyOddA _ -> []
SingleOddA a1 _ a2 ->
[ EmptyOddA a1
, EmptyOddA a2
]
DeepOddA a0 pr m sf a1 -> mconcat
[ [ halfsnocEvenA (halfconsOddE a0 $ digitToTree pr) (fst $ halfunconsOddA m)
, halfconsEvenE (snd $ halfunsnocOddA m) (halfsnocOddE (digitToTree sf) a1)
]
, [EmptyOddA a0]
, [EmptyOddA a1]
, (\m' -> DeepOddA a0 pr m' sf a1) <$> shrinkOddA m
]
shrinkOddE :: TwoFingerOddE e a -> [TwoFingerOddE e a]
shrinkOddE (SingleOddE _) = []
shrinkOddE (DeepOddE pr m sf) = (\m' -> DeepOddE pr m' sf) <$> shrinkOddA m
shrinkEvenA :: TwoFingerEvenA e a -> [TwoFingerEvenA e a]
shrinkEvenA tree = case unconsEvenA tree of
Nothing -> []
Just (_, tree') -> [tree']
shrinkEvenE :: TwoFingerEvenE e a -> [TwoFingerEvenE e a]
shrinkEvenE tree = case unconsEvenE tree of
Nothing -> []
Just (_, tree') -> [tree']
newtype AnyOddA = AnyOddA { getAnyOddA :: TwoFingerOddA Int [Int] }
deriving (Show)
instance QC.Arbitrary AnyOddA where
arbitrary = fmap AnyOddA $ genOddA QC.arbitrary QC.arbitrary =<< QC.choose (0, 10)
shrink = fmap AnyOddA . shrinkOddA . getAnyOddA
newtype AnyOddE = AnyOddE { getAnyOddE :: TwoFingerOddE Int [Int] }
deriving (Show)
instance QC.Arbitrary AnyOddE where
arbitrary = AnyOddE <$> QC.oneof
[ SingleOddE <$> QC.arbitrary
, DeepOddE <$> genDigit QC.arbitrary QC.arbitrary <*> (genOddA (genNode QC.arbitrary QC.arbitrary) QC.arbitrary =<< QC.choose (0, 10)) <*> genDigit QC.arbitrary QC.arbitrary
]
shrink = fmap AnyOddE . shrinkOddE . getAnyOddE
newtype AnyEvenA = AnyEvenA { getAnyEvenA :: TwoFingerEvenA Int [Int] }
deriving (Show)
instance QC.Arbitrary AnyEvenA where
arbitrary = AnyEvenA <$> QC.oneof
[ pure EmptyEvenA
, SingleEvenA <$> QC.arbitrary <*> QC.arbitrary
, DeepEvenA <$> QC.arbitrary <*> genDigit QC.arbitrary QC.arbitrary <*> (genOddA (genNode QC.arbitrary QC.arbitrary) QC.arbitrary =<< QC.choose (0, 10)) <*> genDigit QC.arbitrary QC.arbitrary
]
shrink = fmap AnyEvenA . shrinkEvenA . getAnyEvenA
newtype AnyEvenE = AnyEvenE { getAnyEvenE :: TwoFingerEvenE Int [Int] }
deriving (Show)
instance QC.Arbitrary AnyEvenE where
arbitrary = AnyEvenE <$> QC.oneof
[ pure EmptyEvenE
, SingleEvenE <$> QC.arbitrary <*> QC.arbitrary
, DeepEvenE <$> genDigit QC.arbitrary QC.arbitrary <*> (genOddA (genNode QC.arbitrary QC.arbitrary) QC.arbitrary =<< QC.choose (0, 10)) <*> genDigit QC.arbitrary QC.arbitrary <*> QC.arbitrary
]
shrink = fmap AnyEvenE . shrinkEvenE . getAnyEvenE
alignLeftOddAOddA :: TwoFingerOddA e a -> TwoFingerOddA e' a' -> (TwoFingerOddA (e, e') (a, a'), Either (TwoFingerEvenE e a) (TwoFingerEvenE e' a'))
alignLeftOddAOddA as (halfunsnocOddA -> (bs, a')) = case alignLeftOddAEvenA as bs of
Left (aligned, halfunconsOddA -> (a, rest)) ->
(halfsnocEvenA aligned (a, a'), Left rest)
Right (aligned, rest) -> (aligned, Right $ halfsnocOddE rest a')
alignLeftOddAEvenA :: TwoFingerOddA e a -> TwoFingerEvenA e' a' -> Either (TwoFingerEvenA (e, e') (a, a'), TwoFingerOddA e a) (TwoFingerOddA (e, e') (a, a'), TwoFingerOddE e' a')
alignLeftOddAEvenA as bs = case (unconsOddA as, unconsEvenA bs) of
(Right ((a, e), as'), Just ((a', e'), bs')) -> case alignLeftOddAEvenA as' bs' of
Left (aligned, rest) -> Left (consEvenA (a, a') (e, e') aligned, rest)
Right (aligned, rest) -> Right (consOddA (a, a') (e, e') aligned, rest)
(_, Nothing) -> Left (mempty, as)
(Left a, Just ((a', e'), bs')) -> Right (singletonOddA (a, a'), halfconsEvenA e' bs')
alignLeftEvenAEvenA :: TwoFingerEvenA e a -> TwoFingerEvenA e' a' -> (TwoFingerEvenA (e, e') (a, a'), Either (TwoFingerEvenA e a) (TwoFingerEvenA e' a'))
alignLeftEvenAEvenA as bs = case (unconsEvenA as, unconsEvenA bs) of
(Just ((a, e), as'), Just ((a', e'), bs')) -> case alignLeftEvenAEvenA as' bs' of
(aligned, rest) -> (consEvenA (a, a') (e, e') aligned, rest)
(_, Nothing) -> (mempty, Left as)
(Nothing, _) -> (mempty, Right bs)
alignLeftOddEOddE :: TwoFingerOddE e a -> TwoFingerOddE e' a' -> (TwoFingerOddE (e, e') (a, a'), Either (TwoFingerEvenA e a) (TwoFingerEvenA e' a'))
alignLeftOddEOddE as (halfunsnocOddE -> (bs, e')) = case alignLeftOddEEvenE as bs of
Left (aligned, halfunconsOddE -> (e, rest)) -> (halfsnocEvenE aligned (e, e'), Left rest)
Right (aligned, rest) -> (aligned, Right $ halfsnocOddA rest e')
alignLeftOddEEvenE :: TwoFingerOddE e a -> TwoFingerEvenE e' a' -> Either (TwoFingerEvenE (e, e') (a, a'), TwoFingerOddE e a) (TwoFingerOddE (e, e') (a, a'), TwoFingerOddA e' a')
alignLeftOddEEvenE as bs = case (unconsOddE as, unconsEvenE bs) of
(Right ((e, a), as'), Just ((e', a'), bs')) -> case alignLeftOddEEvenE as' bs' of
Left (aligned, rest) -> Left (consEvenE (e, e') (a, a') aligned, rest)
Right (aligned, rest) -> Right (consOddE (e, e') (a, a') aligned, rest)
(_, Nothing) -> Left (mempty, as)
(Left e, Just ((e', a'), bs')) -> Right (singletonOddE (e, e'), halfconsEvenE a' bs')
alignLeftEvenEEvenE :: TwoFingerEvenE e a -> TwoFingerEvenE e' a' -> (TwoFingerEvenE (e, e') (a, a'), Either (TwoFingerEvenE e a) (TwoFingerEvenE e' a'))
alignLeftEvenEEvenE as bs = case (unconsEvenE as, unconsEvenE bs) of
(Just ((e, a), as'), Just ((e', a'), bs')) -> case alignLeftEvenEEvenE as' bs' of
(aligned, rest) -> (consEvenE (e, e') (a, a') aligned, rest)
(_, Nothing) -> (mempty, Left as)
(Nothing, _) -> (mempty, Right bs)
takeNodeLeft :: (Stream a -> es -> (e, Stream a, es)) -> Stream a -> es -> (Node e a, Stream a, es)
takeNodeLeft f as es =
let (x, a :> as', es') = f as es
(y, as'', es'') = f as' es'
in (Node2 x a y, as'', es'')
takeNodeRight :: (es -> Stream a -> (e, es, Stream a)) -> es -> Stream a -> (Node e a, es, Stream a)
takeNodeRight f es as =
let (x, es', a :> as') = f es as
(y, es'', as'') = f es' as'
in (Node2 y a x, es'', as'')
infiniteOddA'
:: (Stream a -> Stream e -> (Node e' a, Stream a, Stream e))
-> (Stream e -> Stream a -> (Node e' a, Stream e, Stream a))
-> Stream a -> Stream e
-> Stream e -> Stream a
-> TwoFingerOddA e' a
infiniteOddA' f g (a0 :> leftA) leftE rightE (an :> rightA) =
let (prNode, leftA', leftE') = f leftA leftE
(sfNode, rightE', rightA') = g rightE rightA
inner = infiniteOddA' (takeNodeLeft f) (takeNodeRight g) leftA' leftE' rightE' rightA'
in DeepOddA a0 (nodeToDigit prNode) inner (nodeToDigit sfNode) an
repeatOddA :: a -> e -> TwoFingerOddA e a
repeatOddA a e = infiniteOddA (Stream.iterate id a) (Stream.iterate id e) (Stream.iterate id e) (Stream.iterate id a)
infiniteOddA :: Stream a -> Stream e -> Stream e -> Stream a -> TwoFingerOddA e a
infiniteOddA = infiniteOddA' (takeNodeLeft (\as (e :> es) -> (e, as, es))) (takeNodeRight (\(e :> es) as -> (e, es, as)))
repeatOddE :: e -> a -> TwoFingerOddE e a
repeatOddE e a = infiniteOddE (Stream.iterate id e) (Stream.iterate id a) (Stream.iterate id a) (Stream.iterate id e)
infiniteOddE :: Stream e -> Stream a -> Stream a -> Stream e -> TwoFingerOddE e a
infiniteOddE leftE leftA rightA rightE =
DeepOddE (nodeToDigit prNode) inner (nodeToDigit sfNode)
where
f :: Stream a -> Stream e -> (Node e a, Stream a, Stream e)
f = takeNodeLeft (\as (e :> es) -> (e, as, es))
g :: Stream e -> Stream a -> (Node e a, Stream e, Stream a)
g = takeNodeRight (\(e :> es) as -> (e, es, as))
(prNode, leftE', leftA') = f leftA leftE
(sfNode, rightA', rightE') = g rightE rightA
inner = infiniteOddA' (takeNodeLeft f) (takeNodeRight g) leftE' leftA' rightA' rightE'
repeatEvenA :: a -> e -> TwoFingerEvenA e a
repeatEvenA a e = infiniteEvenA (Stream.iterate id a) (Stream.iterate id e) (Stream.iterate id a) (Stream.iterate id e)
infiniteEvenA :: Stream a -> Stream e -> Stream a -> Stream e -> TwoFingerEvenA e a
infiniteEvenA (a :> leftA) leftE rightA rightE =
DeepEvenA a (nodeToDigit prNode) inner (nodeToDigit sfNode)
where
f :: Stream a -> Stream e -> (Node e a, Stream a, Stream e)
f = takeNodeLeft (\as (e :> es) -> (e, as, es))
g :: Stream e -> Stream a -> (Node e a, Stream e, Stream a)
g = takeNodeRight (\(e :> es) as -> (e, es, as))
(prNode, leftE', leftA') = f leftA leftE
(sfNode, rightA', rightE') = g rightE rightA
inner = infiniteOddA' (takeNodeLeft f) (takeNodeRight g) leftE' leftA' rightA' rightE'
repeatEvenE :: e -> a -> TwoFingerEvenE e a
repeatEvenE e a = infiniteEvenE (Stream.iterate id e) (Stream.iterate id a) (Stream.iterate id e) (Stream.iterate id a)
infiniteEvenE :: Stream e -> Stream a -> Stream e -> Stream a -> TwoFingerEvenE e a
infiniteEvenE leftE leftA rightE (a :> rightA) =
DeepEvenE (nodeToDigit prNode) inner (nodeToDigit sfNode) a
where
f :: Stream a -> Stream e -> (Node e a, Stream a, Stream e)
f = takeNodeLeft (\as (e :> es) -> (e, as, es))
g :: Stream e -> Stream a -> (Node e a, Stream e, Stream a)
g = takeNodeRight (\(e :> es) as -> (e, es, as))
(prNode, leftE', leftA') = f leftA leftE
(sfNode, rightA', rightE') = g rightE rightA
inner = infiniteOddA' (takeNodeLeft f) (takeNodeRight g) leftE' leftA' rightA' rightE'