module ConvexHull.Truncated120Cell3 where import Data.List import Math.Combinat.Permutations as P -- http://eusebeia.dyndns.org/4d/trunc120cell -- http://mathworld.wolfram.com/120-Cell.html signs :: (Eq a, Num a) => [a] -> [[a]] signs = mapM (\x -> nub [x,-x]) signsAll :: (Eq a, Num a) => [[a]] -> [[a]] signsAll = concatMap signs vertices :: ([Double], Bool) -> [[Double]] vertices (coords, allperms) = map (map (/ sqrt 270.1640786)) $ signsAll $ nub $ zipWith permuteList perms (replicate 24 coords) where perms = filter (if allperms then const True else isEvenPermutation) (P.permutations 4) vs120trunc = concatMap vertices [([1, 3+4*phi, 3+4*phi, 3+4*phi], True) , ([phi3, phi3, phi3, 5+6*phi], True) , ([2*phi2, 2*phi2, 2*phi2, 2*phi4], True) , ([0, 1, 4+5*phi, phi5] ,False) , ([0, 1, 4+7*phi, 1+3*phi], False) , ([0, phi2, 3*phi3, 2+5*phi], False) , ([0, phi2, 5+6*phi, phi4], False) , ([0, 2*phi, 2*phi4, 2*phi3], False) , ([1, phi2, 4+7*phi, 2*phi2], False) , ([1, phi3, 3*phi2, 3+4*phi], False) , ([phi2, 2*phi, 4+7*phi, phi3], False) , ([phi2, 2*phi2, 4+5*phi, 3+4*phi], False) , ([phi2, 2*phi3, 2+5*phi, 3+4*phi], False) , ([2*phi, phi4, phi5, 3+4*phi], False) , ([phi3, 2*phi2, phi5, 2+5*phi], False) , ([phi3, 1+3*phi, 4+5*phi, 2*phi3], False) , ([2*phi2, 1+3*phi, 3*phi3, phi4], False) ] where phi = (1+sqrt 5) / 2 phi3 = phi*phi*phi phi2 = phi*phi phi4 = phi*phi*phi*phi phi5 = phi*phi*phi*phi*phi