{-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LINE 1 "Quipper/Libraries/ClassicalOptim/AlgExp.hs" #-} {-# LANGUAGE Unsafe #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ < 710 {-# LANGUAGE OverlappingInstances #-} #endif -- | This module contains an efficient representation of algebraic -- boolean formulas. module Quipper.Libraries.ClassicalOptim.AlgExp where import qualified Data.Map as M import qualified Data.List as L import qualified Data.Set as S import qualified Data.IntSet as IS import qualified Data.IntMap.Strict as IM {- containers-0.5.2.1 -} import Quipper.Utils.Auxiliary (bool_xor) import Quipper.Libraries.ClassicalOptim.Circuit -- ---------------------------------------------------------------------- -- * Auxiliary functions -- | Build the characteristic function of a set. mapOfSet :: Ord a => S.Set a -> M.Map a Int mapOfSet s = S.foldl' (\m x -> M.insert x 1 m) M.empty s -- | Get the set of elements whose images are odd. setOfMap :: Ord a => M.Map a Int -> S.Set a setOfMap m = M.foldlWithKey' (\s x _ -> S.insert x s) S.empty $ M.filter (\x -> mod x 2 == 1) m -- | Split a list in the middle. split_even :: [a] -> ([a],[a]) split_even a = splitAt (div (length a) 2) a -- ---------------------------------------------------------------------- -- * Expressions -- | The type of algebraic boolean expressions. -- -- We represent boolean expressions using \"and\" and \"xor\" as the -- primitive connectives. Equivalently, we can regard booleans as the -- elements of the two-element field /F/[sub 2], with operations \"*\" -- (times) and \"+\" (plus). -- -- An algebraic expression -- @x1*x2*x3 + y1*y2*y3 + z1*z2@ -- is encoded as -- @{{x1,x2,x3},{y1,y2,y3},{z1,z2}}@. -- -- In particular, -- @{} == False == 0@ and -- @{{}} == True == 1@. type Exp = S.Set IS.IntSet instance {-# OVERLAPPING #-} Show Exp where show e = if (S.null e) then "F" else if (e == S.singleton (IS.empty)) then "T" else L.concat $ L.intersperse "+" (L.map (\e -> L.concat $ L.map (\x -> "x" ++ (show x)) $ IS.toList e) $ S.toList e) -- | Turn an @Exp@ into a list of lists. listOfExp :: Exp -> [[Int]] listOfExp e = S.toList $ S.map IS.toList e -- | Turn a list of lists into an @Exp@. expOfList :: [[Int]] -> Exp expOfList l = S.fromList $ L.map IS.fromList l -- | The conjunction of two expression. exp_and :: Exp -> Exp -> Exp exp_and a b = setOfMap $ S.foldl (\exp monomial -> M.unionWith (+) exp $ exp_and_aux monomial $ mapOfSet a) M.empty b where exp_and_aux :: IS.IntSet -> M.Map IS.IntSet Int -> M.Map IS.IntSet Int exp_and_aux monomial exp = M.mapKeysWith (+) (IS.union monomial) exp -- | The xor of two expressions. exp_xor :: Exp -> Exp -> Exp exp_xor a b = setOfMap $ M.unionWith (+) (mapOfSet a) (mapOfSet b) -- | The expression \"False\". exp_false :: Exp exp_false = S.empty -- | The expression \"True\". exp_true :: Exp exp_true = S.singleton IS.empty -- | The negation of an expression. exp_not :: Exp -> Exp exp_not e = exp_xor e exp_true -- | The expression /x/[sub /n/]. exp_var :: Int -> Exp exp_var x = S.singleton $ IS.singleton x -- ---------------------------------------------------------------------- -- * Properties of expressions -- $ The important property of expressions is that two formulas have -- the same truth table iff they are syntactically equal. This makes -- the equality test of wires theoretically straightforward. -- ---------------------------------------------------------------------- -- ** Truth tables -- $ A /valuation/ on a set of variables is a map from variables to -- booleans. This can be thought of as a row in a truth table. A -- /truth table/ is a map from valuations to booleans, but we just -- represent this as a list of booleans, listed in lexicographically -- increasing order of valuations. -- | Get the variables used in an expression. vars_of_exp :: Exp -> [Int] vars_of_exp e = IS.toList $ S.foldl (\a b -> IS.union a b) IS.empty e -- | Evaluate the expression with respect to the given valuation. A -- /valuation/ is a map from variables to booleans, i.e., a row in a -- truth table. exp_eval :: Exp -> M.Map Int Bool -> Bool exp_eval e m = L.foldl bool_xor False $ L.map (L.foldl (&&) True) $ L.map (L.map (m M.!)) $ L.map (IS.toList) $ S.toList e -- | Construct the list of all 2[super /n/] valuations for a given -- list of /n/ variables. valuations_of_vars :: [Int] -> [M.Map Int Bool] valuations_of_vars [] = [M.empty] valuations_of_vars (h:t) = l where l = (L.map (M.insert h False) v) ++ (L.map (M.insert h True) v) v = valuations_of_vars t -- | Build the truth table for the given expression, on the given list -- of variables. The truth table is returned as a list of booleans in -- lexicographic order of valuations. For example, if -- -- > 1 2 | exp -- > F F | f1 -- > F T | f2 -- > T F | f3 -- > T T | f4 -- -- then the output of the function is @[f1,f2,f3,f4]@. truth_table_of_exp :: [Int] -> Exp -> [Bool] truth_table_of_exp vars e = L.map (exp_eval e) (valuations_of_vars vars) -- | Return an expression realizing the given truth table. Uses -- variables starting with the given number. exp_of_truth_table :: Int -> [Bool] -> Exp exp_of_truth_table i [] = exp_true exp_of_truth_table i [False] = exp_false exp_of_truth_table i [True] = exp_true exp_of_truth_table i t = ((exp_not (exp_var i)) `exp_and` e1) `exp_xor` ((exp_var i) `exp_and` e2) where (t1,t2) = split_even t e1 = exp_of_truth_table (i+1) t1 e2 = exp_of_truth_table (i+1) t2