module Rank2 (
Functor(..), Apply(..), Applicative(..),
Foldable(..), Traversable(..), Distributive(..), DistributiveTraversable(..), distributeJoin,
Compose(..), Empty(..), Only(..), Identity(..), Product(..), Arrow(..), type (~>),
ap, fmap, liftA4, liftA5,
fmapTraverse, liftA2Traverse1, liftA2Traverse2, liftA2TraverseBoth,
distributeWith, distributeWithTraversable)
where
import qualified Control.Applicative as Rank1
import qualified Control.Monad as Rank1
import qualified Data.Foldable as Rank1
import qualified Data.Traversable as Rank1
import Data.Semigroup (Semigroup(..))
import Data.Monoid (Monoid(..))
import Data.Functor.Compose (Compose(..))
import Prelude hiding (Foldable(..), Traversable(..), Functor(..), Applicative(..), (<$>), fst, snd)
class Functor g where
(<$>) :: (forall a. p a -> q a) -> g p -> g q
fmap :: Functor g => (forall a. p a -> q a) -> g p -> g q
fmap f g = f <$> g
class Foldable g where
foldMap :: Monoid m => (forall a. p a -> m) -> g p -> m
class (Functor g, Foldable g) => Traversable g where
traverse :: Rank1.Applicative m => (forall a. p a -> m (q a)) -> g p -> m (g q)
sequence :: Rank1.Applicative m => g (Compose m p) -> m (g p)
traverse f = sequence . fmap (Compose . f)
sequence = traverse getCompose
newtype Arrow p q a = Arrow{apply :: p a -> q a}
type (~>) = Arrow
infixr 0 ~>
class Functor g => Apply g where
(<*>) :: g (p ~> q) -> g p -> g q
liftA2 :: (forall a. p a -> q a -> r a) -> g p -> g q -> g r
liftA3 :: (forall a. p a -> q a -> r a -> s a) -> g p -> g q -> g r -> g s
(<*>) = liftA2 apply
liftA2 f g h = (Arrow . f) <$> g <*> h
liftA3 f g h i = liftA2 (\p q-> Arrow (f p q)) g h <*> i
liftA4 :: Apply g => (forall a. p a -> q a -> r a -> s a -> t a) -> g p -> g q -> g r -> g s -> g t
liftA4 f g h i j = liftA3 (\p q r-> Arrow (f p q r)) g h i <*> j
liftA5 :: Apply g => (forall a. p a -> q a -> r a -> s a -> t a -> u a) -> g p -> g q -> g r -> g s -> g t -> g u
liftA5 f g1 g2 g3 g4 g5 = liftA4 (\p q r s-> Arrow (f p q r s)) g1 g2 g3 g4 <*> g5
ap :: Apply g => g (p ~> q) -> g p -> g q
ap = (<*>)
class Apply g => Applicative g where
pure :: (forall a. f a) -> g f
class DistributiveTraversable g => Distributive g where
collect :: Rank1.Functor f1 => (a -> g f2) -> f1 a -> g (Compose f1 f2)
distribute :: Rank1.Functor f1 => f1 (g f2) -> g (Compose f1 f2)
cotraverse :: Rank1.Functor m => (forall a. m (p a) -> q a) -> m (g p) -> g q
collect f = distribute . Rank1.fmap f
distribute = cotraverse Compose
cotraverse f = (fmap (f . getCompose)) . distribute
class Functor g => DistributiveTraversable (g :: (k -> *) -> *) where
collectTraversable :: Rank1.Traversable f1 => (a -> g f2) -> f1 a -> g (Compose f1 f2)
distributeTraversable :: Rank1.Traversable f1 => f1 (g f2) -> g (Compose f1 f2)
cotraverseTraversable :: Rank1.Traversable f1 => (forall x. f1 (f2 x) -> f x) -> f1 (g f2) -> g f
collectTraversable f = distributeTraversable . Rank1.fmap f
distributeTraversable = cotraverseTraversable Compose
default cotraverseTraversable :: (Rank1.Traversable m, Distributive g) =>
(forall a. m (p a) -> q a) -> m (g p) -> g q
cotraverseTraversable = cotraverse
distributeJoin :: (Distributive g, Rank1.Monad f) => f (g f) -> g f
distributeJoin = cotraverse Rank1.join
fmapTraverse :: (DistributiveTraversable f, Rank1.Traversable g) => (forall a. g (t a) -> u a) -> g (f t) -> f u
fmapTraverse f x = fmap (f . getCompose) (distributeTraversable x)
liftA2Traverse1 :: (Apply f, DistributiveTraversable f, Rank1.Traversable g) =>
(forall a. g (t a) -> u a -> v a) -> g (f t) -> f u -> f v
liftA2Traverse1 f x = liftA2 (f . getCompose) (distributeTraversable x)
liftA2Traverse2 :: (Apply f, DistributiveTraversable f, Rank1.Traversable g) =>
(forall a. t a -> g (u a) -> v a) -> f t -> g (f u) -> f v
liftA2Traverse2 f x y = liftA2 (\x' y' -> f x' (getCompose y')) x (distributeTraversable y)
liftA2TraverseBoth :: (Apply f, DistributiveTraversable f, Rank1.Traversable g1, Rank1.Traversable g2) =>
(forall a. g1 (t a) -> g2 (u a) -> v a) -> g1 (f t) -> g2 (f u) -> f v
liftA2TraverseBoth f x y = liftA2 applyCompose (distributeTraversable x) (distributeTraversable y)
where applyCompose x' y' = f (getCompose x') (getCompose y')
distributeWith :: (Distributive g, Rank1.Functor f) => (forall i. f (a i) -> b i) -> f (g a) -> g b
distributeWith = cotraverse
distributeWithTraversable :: (DistributiveTraversable g, Rank1.Traversable m) =>
(forall a. m (p a) -> q a) -> m (g p) -> g q
distributeWithTraversable = cotraverseTraversable
data Empty f = Empty deriving (Eq, Ord, Show)
newtype Only a f = Only {fromOnly :: f a} deriving (Eq, Ord, Show)
newtype Identity g f = Identity {runIdentity :: g f} deriving (Eq, Ord, Show)
data Product g h f = Pair {fst :: g f, snd :: h f}
deriving (Eq, Ord, Show)
newtype Flip g a f = Flip (g (f a)) deriving (Eq, Ord, Show)
instance Semigroup (g (f a)) => Semigroup (Flip g a f) where
Flip x <> Flip y = Flip (x <> y)
instance Monoid (g (f a)) => Monoid (Flip g a f) where
mempty = Flip mempty
Flip x `mappend` Flip y = Flip (x `mappend` y)
instance Rank1.Functor g => Rank2.Functor (Flip g a) where
f <$> Flip g = Flip (f Rank1.<$> g)
instance Rank1.Applicative g => Rank2.Apply (Flip g a) where
Flip g <*> Flip h = Flip (apply Rank1.<$> g Rank1.<*> h)
instance Rank1.Applicative g => Rank2.Applicative (Flip g a) where
pure f = Flip (Rank1.pure f)
instance Rank1.Foldable g => Rank2.Foldable (Flip g a) where
foldMap f (Flip g) = Rank1.foldMap f g
instance Rank1.Traversable g => Rank2.Traversable (Flip g a) where
traverse f (Flip g) = Flip Rank1.<$> Rank1.traverse f g
instance Functor Empty where
_ <$> _ = Empty
instance Functor (Only a) where
f <$> Only a = Only (f a)
instance Functor g => Functor (Identity g) where
f <$> Identity g = Identity (f <$> g)
instance (Functor g, Functor h) => Functor (Product g h) where
f <$> g = Pair (f <$> fst g) (f <$> snd g)
instance Foldable Empty where
foldMap _ _ = mempty
instance Foldable (Only x) where
foldMap f (Only x) = f x
instance Foldable g => Foldable (Identity g) where
foldMap f (Identity g) = foldMap f g
instance (Foldable g, Foldable h) => Foldable (Product g h) where
foldMap f ~(Pair g h) = foldMap f g `mappend` foldMap f h
instance Traversable Empty where
traverse _ _ = Rank1.pure Empty
instance Traversable (Only x) where
traverse f (Only x) = Only Rank1.<$> f x
instance Traversable g => Traversable (Identity g) where
traverse f (Identity g) = Identity Rank1.<$> traverse f g
instance (Traversable g, Traversable h) => Traversable (Product g h) where
traverse f ~(Pair g h) = Rank1.liftA2 Pair (traverse f g) (traverse f h)
instance Apply Empty where
_ <*> _ = Empty
liftA2 _ _ _ = Empty
instance Apply (Only x) where
Only f <*> Only x = Only (apply f x)
liftA2 f (Only x) (Only y) = Only (f x y)
instance Apply g => Apply (Identity g) where
Identity g <*> Identity h = Identity (g <*> h)
liftA2 f (Identity g) (Identity h) = Identity (liftA2 f g h)
instance (Apply g, Apply h) => Apply (Product g h) where
gf <*> gx = Pair (fst gf <*> fst gx) (snd gf <*> snd gx)
liftA2 f ~(Pair g1 g2) ~(Pair h1 h2) = Pair (liftA2 f g1 h1) (liftA2 f g2 h2)
instance Applicative Empty where
pure = const Empty
instance Applicative (Only x) where
pure = Only
instance Applicative g => Applicative (Identity g) where
pure f = Identity (pure f)
instance (Applicative g, Applicative h) => Applicative (Product g h) where
pure f = Pair (pure f) (pure f)
instance DistributiveTraversable Empty
instance DistributiveTraversable (Only x)
instance DistributiveTraversable g => DistributiveTraversable (Identity g) where
cotraverseTraversable w f = Identity (cotraverseTraversable w $ Rank1.fmap runIdentity f)
instance (DistributiveTraversable g, DistributiveTraversable h) => DistributiveTraversable (Product g h) where
cotraverseTraversable w f = Pair (cotraverseTraversable w $ Rank1.fmap fst f)
(cotraverseTraversable w $ Rank1.fmap snd f)
instance Distributive Empty where
cotraverse _ _ = Empty
instance Distributive (Only x) where
cotraverse w f = Only (w $ Rank1.fmap fromOnly f)
instance Distributive g => Distributive (Identity g) where
cotraverse w f = Identity (cotraverse w $ Rank1.fmap runIdentity f)
instance (Distributive g, Distributive h) => Distributive (Product g h) where
cotraverse w f = Pair (cotraverse w $ Rank1.fmap fst f) (cotraverse w $ Rank1.fmap snd f)