#if __GLASGOW_HASKELL__ >= 702
#endif
#ifndef MIN_VERSION_semigroups
#define MIN_VERSION_semigroups(x,y,z) 1
#endif
module Data.Semigroup.Reducer
( Reducer(..)
, foldMapReduce, foldMapReduce1
, foldReduce, foldReduce1
, pureUnit
, returnUnit
, Count(..)
) where
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative
#endif
import qualified Data.Monoid as Monoid
import Data.Semigroup as Semigroup
import Data.Semigroup.Foldable
import Data.Semigroup.Instances ()
import Data.Hashable
#if __GLASGOW_HASKELL__ < 710
import Data.Foldable
#endif
import Data.FingerTree
import qualified Data.Sequence as Seq
import Data.Sequence (Seq)
import qualified Data.Set as Set
import Data.Set (Set)
import qualified Data.IntSet as IntSet
import Data.IntSet (IntSet)
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)
import qualified Data.Map as Map
import Data.Map (Map)
#ifdef LANGUAGE_DeriveDataTypeable
import Data.Data
#endif
class Semigroup m => Reducer c m where
unit :: c -> m
snoc :: m -> c -> m
cons :: c -> m -> m
snoc m = (<>) m . unit
cons = (<>) . unit
foldMapReduce :: (Foldable f, Monoid m, Reducer e m) => (a -> e) -> f a -> m
foldMapReduce f = foldMap (unit . f)
foldMapReduce1 :: (Foldable1 f, Reducer e m) => (a -> e) -> f a -> m
foldMapReduce1 f = foldMap1 (unit . f)
foldReduce :: (Foldable f, Monoid m, Reducer e m) => f e -> m
foldReduce = foldMap unit
foldReduce1 :: (Foldable1 f, Reducer e m) => f e -> m
foldReduce1 = foldMap1 unit
returnUnit :: (Monad m, Reducer c n) => c -> m n
returnUnit = return . unit
pureUnit :: (Applicative f, Reducer c n) => c -> f n
pureUnit = pure . unit
newtype Count = Count { getCount :: Int } deriving
( Eq, Ord, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
, Data, Typeable
#endif
)
instance Hashable Count where
hashWithSalt n = hashWithSalt n . getCount
instance Semigroup Count where
Count a <> Count b = Count (a + b)
#if MIN_VERSION_semigroups(0,17,0)
stimes n (Count a) = Count $ fromIntegral n * a
#else
times1p n (Count a) = Count $ (fromIntegral n + 1) * a
#endif
instance Monoid Count where
mempty = Count 0
Count a `mappend` Count b = Count (a + b)
instance Reducer a Count where
unit _ = Count 1
Count n `snoc` _ = Count (n + 1)
_ `cons` Count n = Count (n + 1)
instance (Reducer c m, Reducer c n) => Reducer c (m,n) where
unit x = (unit x,unit x)
(m,n) `snoc` x = (m `snoc` x, n `snoc` x)
x `cons` (m,n) = (x `cons` m, x `cons` n)
instance (Reducer c m, Reducer c n, Reducer c o) => Reducer c (m,n,o) where
unit x = (unit x,unit x, unit x)
(m,n,o) `snoc` x = (m `snoc` x, n `snoc` x, o `snoc` x)
x `cons` (m,n,o) = (x `cons` m, x `cons` n, x `cons` o)
instance (Reducer c m, Reducer c n, Reducer c o, Reducer c p) => Reducer c (m,n,o,p) where
unit x = (unit x,unit x, unit x, unit x)
(m,n,o,p) `snoc` x = (m `snoc` x, n `snoc` x, o `snoc` x, p `snoc` x)
x `cons` (m,n,o,p) = (x `cons` m, x `cons` n, x `cons` o, x `cons` p)
instance Reducer c [c] where
unit = return
cons = (:)
xs `snoc` x = xs ++ [x]
instance Reducer c () where
unit _ = ()
_ `snoc` _ = ()
_ `cons` _ = ()
instance Reducer Bool Any where
unit = Any
instance Reducer Bool All where
unit = All
instance Reducer (a -> a) (Endo a) where
unit = Endo
instance Semigroup a => Reducer a (Dual a) where
unit = Dual
instance Num a => Reducer a (Sum a) where
unit = Sum
instance Num a => Reducer a (Product a) where
unit = Product
instance Ord a => Reducer a (Min a) where
unit = Min
instance Ord a => Reducer a (Max a) where
unit = Max
instance Reducer (Maybe a) (Monoid.First a) where
unit = Monoid.First
instance Reducer a (Semigroup.First a) where
unit = Semigroup.First
instance Reducer (Maybe a) (Monoid.Last a) where
unit = Monoid.Last
instance Reducer a (Semigroup.Last a) where
unit = Semigroup.Last
instance Measured v a => Reducer a (FingerTree v a) where
unit = singleton
cons = (<|)
snoc = (|>)
instance Reducer a (Seq a) where
unit = Seq.singleton
cons = (Seq.<|)
snoc = (Seq.|>)
instance Reducer Int IntSet where
unit = IntSet.singleton
cons = IntSet.insert
snoc = flip IntSet.insert
instance Ord a => Reducer a (Set a) where
unit = Set.singleton
cons = Set.insert
snoc s m | Set.member m s = s
| otherwise = Set.insert m s
instance Reducer (Int, v) (IntMap v) where
unit = uncurry IntMap.singleton
cons = uncurry IntMap.insert
snoc = flip . uncurry . IntMap.insertWith $ const id
instance Ord k => Reducer (k, v) (Map k v) where
unit = uncurry Map.singleton
cons = uncurry Map.insert
snoc = flip . uncurry . Map.insertWith $ const id
instance Monoid m => Reducer m (WrappedMonoid m) where
unit = WrapMonoid