#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706
#define USE_TYPE_LITS 1
#endif
#ifdef MIN_VERSION_template_haskell
#endif
#ifndef MIN_VERSION_base
#define MIN_VERSION_base(x,y,z) 1
#endif
module Data.Reflection
(
Reifies(..)
, reify
#if __GLASGOW_HASKELL__ >= 708
, reifyNat
, reifySymbol
#endif
, reifyTypeable
, Given(..)
, give
#ifdef MIN_VERSION_template_haskell
, int, nat
#endif
, Z, D, SD, PD
) where
import Data.Proxy
#if (defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 707) || (defined(MIN_VERSION_template_haskell) && USE_TYPE_LITS)
import GHC.TypeLits
#endif
#ifdef MIN_VERSION_template_haskell
import Language.Haskell.TH hiding (reify)
import Control.Monad
#endif
#ifdef __HUGS__
import Hugs.IOExts
#else
import Unsafe.Coerce
#endif
import Foreign.Ptr
import Foreign.StablePtr
import System.IO.Unsafe
import Data.Bits
import Data.Word
import Data.Typeable
#if !MIN_VERSION_base(4,8,0)
import Control.Applicative
#endif
#ifdef HLINT
#endif
class Reifies s a | s -> a where
reflect :: proxy s -> a
newtype Magic a r = Magic (forall (s :: *). Reifies s a => Proxy s -> r)
reify :: forall a r. a -> (forall (s :: *). Reifies s a => Proxy s -> r) -> r
reify a k = unsafeCoerce (Magic k :: Magic a r) (const a) Proxy
#if __GLASGOW_HASKELL__ >= 707
instance KnownNat n => Reifies n Integer where
reflect = natVal
instance KnownSymbol n => Reifies n String where
reflect = symbolVal
#endif
#if __GLASGOW_HASKELL__ >= 708
newtype MagicNat r = MagicNat (forall (n :: Nat). KnownNat n => Proxy n -> r)
reifyNat :: forall r. Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat n k = unsafeCoerce (MagicNat k :: MagicNat r) n Proxy
newtype MagicSymbol r = MagicSymbol (forall (n :: Symbol). KnownSymbol n => Proxy n -> r)
reifySymbol :: forall r. String -> (forall (n :: Symbol). KnownSymbol n => Proxy n -> r) -> r
reifySymbol n k = unsafeCoerce (MagicSymbol k :: MagicSymbol r) n Proxy
#endif
class Given a where
given :: a
newtype Gift a r = Gift (Given a => r)
give :: forall a r. a -> (Given a => r) -> r
give a k = unsafeCoerce (Gift k :: Gift a r) a
data Z
data D (n :: *)
data SD (n :: *)
data PD (n :: *)
instance Reifies Z Int where
reflect _ = 0
retagD :: (Proxy n -> a) -> proxy (D n) -> a
retagD f _ = f Proxy
retagSD :: (Proxy n -> a) -> proxy (SD n) -> a
retagSD f _ = f Proxy
retagPD :: (Proxy n -> a) -> proxy (PD n) -> a
retagPD f _ = f Proxy
instance Reifies n Int => Reifies (D n) Int where
reflect = (\n -> n + n) `fmap` retagD reflect
instance Reifies n Int => Reifies (SD n) Int where
reflect = (\n -> n + n + 1) `fmap` retagSD reflect
instance Reifies n Int => Reifies (PD n) Int where
reflect = (\n -> n + n 1) `fmap` retagPD reflect
#ifdef MIN_VERSION_template_haskell
int :: Int -> TypeQ
int n = case quotRem n 2 of
(0, 0) -> conT ''Z
(q,1) -> conT ''PD `appT` int q
(q, 0) -> conT ''D `appT` int q
(q, 1) -> conT ''SD `appT` int q
_ -> error "ghc is bad at math"
nat :: Int -> TypeQ
nat n
| n >= 0 = int n
| otherwise = error "nat: negative"
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ < 704
instance Show (Q a) where
show _ = "Q"
instance Eq (Q a) where
_ == _ = False
#endif
instance Num a => Num (Q a) where
(+) = liftM2 (+)
(*) = liftM2 (*)
() = liftM2 ()
negate = fmap negate
abs = fmap abs
signum = fmap signum
fromInteger = return . fromInteger
instance Fractional a => Fractional (Q a) where
(/) = liftM2 (/)
recip = fmap recip
fromRational = return . fromRational
instance Num Type where
#ifdef USE_TYPE_LITS
LitT (NumTyLit a) + LitT (NumTyLit b) = LitT (NumTyLit (a+b))
a + b = AppT (AppT (VarT ''(+)) a) b
LitT (NumTyLit a) * LitT (NumTyLit b) = LitT (NumTyLit (a*b))
(*) a b = AppT (AppT (VarT ''(*)) a) b
#if MIN_VERSION_base(4,8,0)
a b = AppT (AppT (VarT ''()) a) b
#else
() = error "Type.(-): undefined"
#endif
fromInteger = LitT . NumTyLit
#else
(+) = error "Type.(+): undefined"
(*) = error "Type.(*): undefined"
() = error "Type.(-): undefined"
fromInteger n = case quotRem n 2 of
(0, 0) -> ConT ''Z
(q,1) -> ConT ''PD `AppT` fromInteger q
(q, 0) -> ConT ''D `AppT` fromInteger q
(q, 1) -> ConT ''SD `AppT` fromInteger q
_ -> error "ghc is bad at math"
#endif
abs = error "Type.abs"
signum = error "Type.signum"
onProxyType1 :: (Type -> Type) -> (Exp -> Exp)
onProxyType1 f
(SigE _ ta@(AppT (ConT proxyName) (VarT _)))
| proxyName == ''Proxy = ConE 'Proxy `SigE` (ConT ''Proxy `AppT` f ta)
onProxyType1 f a =
LamE [SigP WildP na] body `AppE` a
where
body = ConE 'Proxy `SigE` (ConT ''Proxy `AppT` f na)
na = VarT (mkName "na")
onProxyType2 :: Name -> (Type -> Type -> Type) -> (Exp -> Exp -> Exp)
onProxyType2 _fName f
(SigE _ (AppT (ConT proxyName) ta))
(SigE _ (AppT (ConT proxyName') tb))
| proxyName == ''Proxy,
proxyName' == ''Proxy = ConE 'Proxy `SigE`
(ConT ''Proxy `AppT` f ta tb)
onProxyType2 fName _f a b = VarE fName `AppE` a `AppE` b
instance Num Exp where
(+) = onProxyType2 'addProxy (+)
(*) = onProxyType2 'mulProxy (*)
() = onProxyType2 'subProxy ()
negate = onProxyType1 negate
abs = onProxyType1 abs
signum = onProxyType1 signum
fromInteger n = ConE 'Proxy `SigE` (ConT ''Proxy `AppT` fromInteger n)
#ifdef USE_TYPE_LITS
addProxy :: Proxy a -> Proxy b -> Proxy (a + b)
addProxy _ _ = Proxy
mulProxy :: Proxy a -> Proxy b -> Proxy (a * b)
mulProxy _ _ = Proxy
#if MIN_VERSION_base(4,8,0)
subProxy :: Proxy a -> Proxy b -> Proxy (a b)
subProxy _ _ = Proxy
#else
subProxy :: Proxy a -> Proxy b -> Proxy c
subProxy _ _ = error "Exp.(-): undefined"
#endif
#else
addProxy :: Proxy a -> Proxy b -> Proxy c
addProxy _ _ = error "Exp.(+): undefined"
mulProxy :: Proxy a -> Proxy b -> Proxy c
mulProxy _ _ = error "Exp.(*): undefined"
subProxy :: Proxy a -> Proxy b -> Proxy c
subProxy _ _ = error "Exp.(-): undefined"
#endif
#endif
class Typeable s => B s where
reflectByte :: proxy s -> IntPtr
#define BYTES(GO) \
GO(T0,0) GO(T1,1) GO(T2,2) GO(T3,3) GO(T4,4) GO(T5,5) GO(T6,6) GO(T7,7) GO(T8,8) GO(T9,9) GO(T10,10) GO(T11,11) \
GO(T12,12) GO(T13,13) GO(T14,14) GO(T15,15) GO(T16,16) GO(T17,17) GO(T18,18) GO(T19,19) GO(T20,20) GO(T21,21) GO(T22,22) \
GO(T23,23) GO(T24,24) GO(T25,25) GO(T26,26) GO(T27,27) GO(T28,28) GO(T29,29) GO(T30,30) GO(T31,31) GO(T32,32) GO(T33,33) \
GO(T34,34) GO(T35,35) GO(T36,36) GO(T37,37) GO(T38,38) GO(T39,39) GO(T40,40) GO(T41,41) GO(T42,42) GO(T43,43) GO(T44,44) \
GO(T45,45) GO(T46,46) GO(T47,47) GO(T48,48) GO(T49,49) GO(T50,50) GO(T51,51) GO(T52,52) GO(T53,53) GO(T54,54) GO(T55,55) \
GO(T56,56) GO(T57,57) GO(T58,58) GO(T59,59) GO(T60,60) GO(T61,61) GO(T62,62) GO(T63,63) GO(T64,64) GO(T65,65) GO(T66,66) \
GO(T67,67) GO(T68,68) GO(T69,69) GO(T70,70) GO(T71,71) GO(T72,72) GO(T73,73) GO(T74,74) GO(T75,75) GO(T76,76) GO(T77,77) \
GO(T78,78) GO(T79,79) GO(T80,80) GO(T81,81) GO(T82,82) GO(T83,83) GO(T84,84) GO(T85,85) GO(T86,86) GO(T87,87) GO(T88,88) \
GO(T89,89) GO(T90,90) GO(T91,91) GO(T92,92) GO(T93,93) GO(T94,94) GO(T95,95) GO(T96,96) GO(T97,97) GO(T98,98) GO(T99,99) \
GO(T100,100) GO(T101,101) GO(T102,102) GO(T103,103) GO(T104,104) GO(T105,105) GO(T106,106) GO(T107,107) GO(T108,108) \
GO(T109,109) GO(T110,110) GO(T111,111) GO(T112,112) GO(T113,113) GO(T114,114) GO(T115,115) GO(T116,116) GO(T117,117) \
GO(T118,118) GO(T119,119) GO(T120,120) GO(T121,121) GO(T122,122) GO(T123,123) GO(T124,124) GO(T125,125) GO(T126,126) \
GO(T127,127) GO(T128,128) GO(T129,129) GO(T130,130) GO(T131,131) GO(T132,132) GO(T133,133) GO(T134,134) GO(T135,135) \
GO(T136,136) GO(T137,137) GO(T138,138) GO(T139,139) GO(T140,140) GO(T141,141) GO(T142,142) GO(T143,143) GO(T144,144) \
GO(T145,145) GO(T146,146) GO(T147,147) GO(T148,148) GO(T149,149) GO(T150,150) GO(T151,151) GO(T152,152) GO(T153,153) \
GO(T154,154) GO(T155,155) GO(T156,156) GO(T157,157) GO(T158,158) GO(T159,159) GO(T160,160) GO(T161,161) GO(T162,162) \
GO(T163,163) GO(T164,164) GO(T165,165) GO(T166,166) GO(T167,167) GO(T168,168) GO(T169,169) GO(T170,170) GO(T171,171) \
GO(T172,172) GO(T173,173) GO(T174,174) GO(T175,175) GO(T176,176) GO(T177,177) GO(T178,178) GO(T179,179) GO(T180,180) \
GO(T181,181) GO(T182,182) GO(T183,183) GO(T184,184) GO(T185,185) GO(T186,186) GO(T187,187) GO(T188,188) GO(T189,189) \
GO(T190,190) GO(T191,191) GO(T192,192) GO(T193,193) GO(T194,194) GO(T195,195) GO(T196,196) GO(T197,197) GO(T198,198) \
GO(T199,199) GO(T200,200) GO(T201,201) GO(T202,202) GO(T203,203) GO(T204,204) GO(T205,205) GO(T206,206) GO(T207,207) \
GO(T208,208) GO(T209,209) GO(T210,210) GO(T211,211) GO(T212,212) GO(T213,213) GO(T214,214) GO(T215,215) GO(T216,216) \
GO(T217,217) GO(T218,218) GO(T219,219) GO(T220,220) GO(T221,221) GO(T222,222) GO(T223,223) GO(T224,224) GO(T225,225) \
GO(T226,226) GO(T227,227) GO(T228,228) GO(T229,229) GO(T230,230) GO(T231,231) GO(T232,232) GO(T233,233) GO(T234,234) \
GO(T235,235) GO(T236,236) GO(T237,237) GO(T238,238) GO(T239,239) GO(T240,240) GO(T241,241) GO(T242,242) GO(T243,243) \
GO(T244,244) GO(T245,245) GO(T246,246) GO(T247,247) GO(T248,248) GO(T249,249) GO(T250,250) GO(T251,251) GO(T252,252) \
GO(T253,253) GO(T254,254) GO(T255,255)
#define GO(Tn,n) \
newtype Tn = Tn Tn deriving Typeable; \
instance B Tn where { \
reflectByte _ = n \
};
BYTES(GO)
#undef GO
impossible :: a
impossible = error "Data.Reflection.reifyByte: impossible"
reifyByte :: Word8 -> (forall (s :: *). B s => Proxy s -> r) -> r
reifyByte w k = case w of {
#define GO(Tn,n) n -> k (Proxy :: Proxy Tn);
BYTES(GO)
#undef GO
_ -> impossible
}
newtype W (b0 :: *) (b1 :: *) (b2 :: *) (b3 :: *) = W (W b0 b1 b2 b3) deriving Typeable
newtype Stable (w0 :: *) (w1 :: *) (a :: *) = Stable (Stable w0 w1 a) deriving Typeable
stable :: p b0 -> p b1 -> p b2 -> p b3 -> p b4 -> p b5 -> p b6 -> p b7
-> Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
stable _ _ _ _ _ _ _ _ = Proxy
stablePtrToIntPtr :: StablePtr a -> IntPtr
stablePtrToIntPtr = ptrToIntPtr . castStablePtrToPtr
intPtrToStablePtr :: IntPtr -> StablePtr a
intPtrToStablePtr = castPtrToStablePtr . intPtrToPtr
byte0 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b0
byte0 _ = Proxy
byte1 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b1
byte1 _ = Proxy
byte2 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b2
byte2 _ = Proxy
byte3 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b3
byte3 _ = Proxy
byte4 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b4
byte4 _ = Proxy
byte5 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b5
byte5 _ = Proxy
byte6 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b6
byte6 _ = Proxy
byte7 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b7
byte7 _ = Proxy
argument :: (p s -> r) -> Proxy s
argument _ = Proxy
instance (B b0, B b1, B b2, B b3, B b4, B b5, B b6, B b7, w0 ~ W b0 b1 b2 b3, w1 ~ W b4 b5 b6 b7)
=> Reifies (Stable w0 w1 a) a where
reflect = r where
r = unsafePerformIO $ const <$> deRefStablePtr p <* freeStablePtr p
s = argument r
p = intPtrToStablePtr $
reflectByte (byte0 s) .|.
(reflectByte (byte1 s) `shiftL` 8) .|.
(reflectByte (byte2 s) `shiftL` 16) .|.
(reflectByte (byte3 s) `shiftL` 24) .|.
(reflectByte (byte4 s) `shiftL` 32) .|.
(reflectByte (byte5 s) `shiftL` 40) .|.
(reflectByte (byte6 s) `shiftL` 48) .|.
(reflectByte (byte7 s) `shiftL` 56)
reflectBefore :: forall (proxy :: * -> *) s b. (Proxy s -> b) -> proxy s -> b
reflectBefore f = const $! f Proxy
reifyTypeable :: Typeable a => a -> (forall (s :: *). (Typeable s, Reifies s a) => Proxy s -> r) -> r
reifyTypeable a k = unsafeDupablePerformIO $ do
p <- newStablePtr a
let n = stablePtrToIntPtr p
reifyByte (fromIntegral n) (\s0 ->
reifyByte (fromIntegral (n `shiftR` 8)) (\s1 ->
reifyByte (fromIntegral (n `shiftR` 16)) (\s2 ->
reifyByte (fromIntegral (n `shiftR` 24)) (\s3 ->
reifyByte (fromIntegral (n `shiftR` 32)) (\s4 ->
reifyByte (fromIntegral (n `shiftR` 40)) (\s5 ->
reifyByte (fromIntegral (n `shiftR` 48)) (\s6 ->
reifyByte (fromIntegral (n `shiftR` 56)) (\s7 ->
reflectBefore (fmap return k) $
stable s0 s1 s2 s3 s4 s5 s6 s7))))))))