module Data.Functor.Bind (
Functor(..)
, (<$>)
, ( $>)
, Apply(..)
, (<..>)
, liftF2
, liftF3
, WrappedApplicative(..)
, MaybeApply(..)
, Bind(..)
, (-<<)
, (-<-)
, (->-)
, apDefault
, returning
) where
import Control.Applicative
import Control.Arrow
import Control.Category
import Control.Comonad
import Control.Monad (ap)
import Control.Monad.Instances
import Control.Monad.Trans.Cont
import Control.Monad.Trans.Error
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Maybe
import Control.Monad.Trans.Reader
import Control.Monad.Trans.List
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Strict as Strict
import Data.Functor.Compose
import Data.Functor.Identity
import Data.Functor.Product
import Data.Functor.Extend
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)
import qualified Data.Map as Map
import Data.Map (Map)
import Data.List.NonEmpty
import Data.Semigroup hiding (Product)
import Data.Sequence (Seq)
import Data.Tree (Tree)
import Prelude hiding (id, (.))
infixl 1 >>-
infixr 1 -<<
infixl 4 <.>, <., .>, <..>
class Functor f => Apply f where
(<.>) :: f (a -> b) -> f a -> f b
(.>) :: f a -> f b -> f b
a .> b = const id <$> a <.> b
(<.) :: f a -> f b -> f a
a <. b = const <$> a <.> b
instance (Apply f, Apply g) => Apply (Compose f g) where
Compose f <.> Compose x = Compose ((<.>) <$> f <.> x)
instance (Apply f, Apply g) => Apply (Product f g) where
Pair f g <.> Pair x y = Pair (f <.> x) (g <.> y)
instance Semigroup m => Apply ((,)m) where
(m, f) <.> (n, a) = (m <> n, f a)
(m, a) <. (n, _) = (m <> n, a)
(m, _) .> (n, b) = (m <> n, b)
instance Apply NonEmpty where
(<.>) = ap
instance Apply (Either a) where
Left a <.> _ = Left a
Right _ <.> Left a = Left a
Right f <.> Right b = Right (f b)
Left a <. _ = Left a
Right _ <. Left a = Left a
Right a <. Right _ = Right a
Left a .> _ = Left a
Right _ .> Left a = Left a
Right _ .> Right b = Right b
instance Semigroup m => Apply (Const m) where
Const m <.> Const n = Const (m <> n)
Const m <. Const n = Const (m <> n)
Const m .> Const n = Const (m <> n)
instance Apply ((->)m) where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply ZipList where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply [] where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply IO where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply Maybe where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply Option where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply Identity where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply w => Apply (IdentityT w) where
IdentityT wa <.> IdentityT wb = IdentityT (wa <.> wb)
instance Monad m => Apply (WrappedMonad m) where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Arrow a => Apply (WrappedArrow a b) where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Ord k => Apply (Map k) where
(<.>) = Map.intersectionWith id
(<. ) = Map.intersectionWith const
( .>) = Map.intersectionWith (const id)
instance Apply IntMap where
(<.>) = IntMap.intersectionWith id
(<. ) = IntMap.intersectionWith const
( .>) = IntMap.intersectionWith (const id)
instance Apply Seq where
(<.>) = ap
instance Apply Tree where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance (Bind m, Monad m) => Apply (MaybeT m) where
(<.>) = apDefault
instance (Bind m, Monad m) => Apply (ErrorT e m) where
(<.>) = apDefault
instance Apply m => Apply (ReaderT e m) where
ReaderT f <.> ReaderT a = ReaderT $ \e -> f e <.> a e
instance Apply m => Apply (ListT m) where
ListT f <.> ListT a = ListT $ (<.>) <$> f <.> a
instance (Apply m, Semigroup w) => Apply (Strict.WriterT w m) where
Strict.WriterT f <.> Strict.WriterT a = Strict.WriterT $ flap <$> f <.> a where
flap (x,m) (y,n) = (x y, m <> n)
instance (Apply m, Semigroup w) => Apply (Lazy.WriterT w m) where
Lazy.WriterT f <.> Lazy.WriterT a = Lazy.WriterT $ flap <$> f <.> a where
flap ~(x,m) ~(y,n) = (x y, m <> n)
instance Bind m => Apply (Strict.StateT s m) where
(<.>) = apDefault
instance Bind m => Apply (Lazy.StateT s m) where
(<.>) = apDefault
instance (Bind m, Semigroup w) => Apply (Strict.RWST r w s m) where
(<.>) = apDefault
instance (Bind m, Semigroup w) => Apply (Lazy.RWST r w s m) where
(<.>) = apDefault
instance Apply (ContT r m) where
ContT f <.> ContT v = ContT $ \k -> f $ \g -> v (k . g)
newtype WrappedApplicative f a = WrapApplicative { unwrapApplicative :: f a }
instance Functor f => Functor (WrappedApplicative f) where
fmap f (WrapApplicative a) = WrapApplicative (f <$> a)
instance Applicative f => Apply (WrappedApplicative f) where
WrapApplicative f <.> WrapApplicative a = WrapApplicative (f <*> a)
WrapApplicative a <. WrapApplicative b = WrapApplicative (a <* b)
WrapApplicative a .> WrapApplicative b = WrapApplicative (a *> b)
instance Applicative f => Applicative (WrappedApplicative f) where
pure = WrapApplicative . pure
WrapApplicative f <*> WrapApplicative a = WrapApplicative (f <*> a)
WrapApplicative a <* WrapApplicative b = WrapApplicative (a <* b)
WrapApplicative a *> WrapApplicative b = WrapApplicative (a *> b)
instance Alternative f => Alternative (WrappedApplicative f) where
empty = WrapApplicative empty
WrapApplicative a <|> WrapApplicative b = WrapApplicative (a <|> b)
newtype MaybeApply f a = MaybeApply { runMaybeApply :: Either (f a) a }
instance Functor f => Functor (MaybeApply f) where
fmap f (MaybeApply (Right a)) = MaybeApply (Right (f a ))
fmap f (MaybeApply (Left fa)) = MaybeApply (Left (f <$> fa))
instance Apply f => Apply (MaybeApply f) where
MaybeApply (Right f) <.> MaybeApply (Right a) = MaybeApply (Right (f a ))
MaybeApply (Right f) <.> MaybeApply (Left fa) = MaybeApply (Left (f <$> fa))
MaybeApply (Left ff) <.> MaybeApply (Right a) = MaybeApply (Left (($a) <$> ff))
MaybeApply (Left ff) <.> MaybeApply (Left fa) = MaybeApply (Left (ff <.> fa))
MaybeApply a <. MaybeApply (Right _) = MaybeApply a
MaybeApply (Right a) <. MaybeApply (Left fb) = MaybeApply (Left (a <$ fb))
MaybeApply (Left fa) <. MaybeApply (Left fb) = MaybeApply (Left (fa <. fb))
MaybeApply (Right _) .> MaybeApply b = MaybeApply b
MaybeApply (Left fa) .> MaybeApply (Right b) = MaybeApply (Left (fa $> b ))
MaybeApply (Left fa) .> MaybeApply (Left fb) = MaybeApply (Left (fa .> fb))
instance Apply f => Applicative (MaybeApply f) where
pure a = MaybeApply (Right a)
(<*>) = (<.>)
(<* ) = (<. )
( *>) = ( .>)
(<..>) :: Apply w => w a -> w (a -> b) -> w b
(<..>) = liftF2 (flip id)
liftF2 :: Apply w => (a -> b -> c) -> w a -> w b -> w c
liftF2 f a b = f <$> a <.> b
liftF3 :: Apply w => (a -> b -> c -> d) -> w a -> w b -> w c -> w d
liftF3 f a b c = f <$> a <.> b <.> c
instance Extend f => Extend (MaybeApply f) where
duplicated w@(MaybeApply Right{}) = MaybeApply (Right w)
duplicated (MaybeApply (Left fa)) = MaybeApply (Left (extended (MaybeApply . Left) fa))
instance Comonad f => Comonad (MaybeApply f) where
duplicate w@(MaybeApply Right{}) = MaybeApply (Right w)
duplicate (MaybeApply (Left fa)) = MaybeApply (Left (extend (MaybeApply . Left) fa))
extract (MaybeApply (Left fa)) = extract fa
extract (MaybeApply (Right a)) = a
instance Apply (Cokleisli w a) where
Cokleisli f <.> Cokleisli a = Cokleisli (\w -> (f w) (a w))
class Apply m => Bind m where
(>>-) :: m a -> (a -> m b) -> m b
m >>- f = join (fmap f m)
join :: m (m a) -> m a
join = (>>- id)
returning :: Functor f => f a -> (a -> b) -> f b
returning = flip fmap
(-<<) :: Bind m => (a -> m b) -> m a -> m b
(-<<) = flip (>>-)
(->-) :: Bind m => (a -> m b) -> (b -> m c) -> a -> m c
f ->- g = \a -> f a >>- g
(-<-) :: Bind m => (b -> m c) -> (a -> m b) -> a -> m c
g -<- f = \a -> f a >>- g
apDefault :: Bind f => f (a -> b) -> f a -> f b
apDefault f x = f >>- \f' -> f' <$> x
instance Semigroup m => Bind ((,)m) where
~(m, a) >>- f = let (n, b) = f a in (m <> n, b)
instance Bind (Either a) where
Left a >>- _ = Left a
Right a >>- f = f a
instance (Bind f, Bind g) => Bind (Product f g) where
Pair m n >>- f = Pair (m >>- fstP . f) (n >>- sndP . f) where
fstP (Pair a _) = a
sndP (Pair _ b) = b
instance Bind ((->)m) where
f >>- g = \e -> g (f e) e
instance Bind [] where
(>>-) = (>>=)
instance Bind NonEmpty where
(>>-) = (>>=)
instance Bind IO where
(>>-) = (>>=)
instance Bind Maybe where
(>>-) = (>>=)
instance Bind Option where
(>>-) = (>>=)
instance Bind Identity where
(>>-) = (>>=)
instance Bind m => Bind (IdentityT m) where
IdentityT m >>- f = IdentityT (m >>- runIdentityT . f)
instance Monad m => Bind (WrappedMonad m) where
WrapMonad m >>- f = WrapMonad $ m >>= unwrapMonad . f
instance (Bind m, Monad m) => Bind (MaybeT m) where
(>>-) = (>>=)
instance (Bind m, Monad m) => Bind (ListT m) where
(>>-) = (>>=)
instance (Bind m, Monad m) => Bind (ErrorT e m) where
m >>- k = ErrorT $ do
a <- runErrorT m
case a of
Left l -> return (Left l)
Right r -> runErrorT (k r)
instance Bind m => Bind (ReaderT e m) where
ReaderT m >>- f = ReaderT $ \e -> m e >>- \x -> runReaderT (f x) e
instance (Bind m, Semigroup w) => Bind (Lazy.WriterT w m) where
m >>- k = Lazy.WriterT $
Lazy.runWriterT m >>- \ ~(a, w) ->
Lazy.runWriterT (k a) `returning` \ ~(b, w') ->
(b, w <> w')
instance (Bind m, Semigroup w) => Bind (Strict.WriterT w m) where
m >>- k = Strict.WriterT $
Strict.runWriterT m >>- \ (a, w) ->
Strict.runWriterT (k a) `returning` \ (b, w') ->
(b, w <> w')
instance Bind m => Bind (Lazy.StateT s m) where
m >>- k = Lazy.StateT $ \s ->
Lazy.runStateT m s >>- \ ~(a, s') ->
Lazy.runStateT (k a) s'
instance Bind m => Bind (Strict.StateT s m) where
m >>- k = Strict.StateT $ \s ->
Strict.runStateT m s >>- \ ~(a, s') ->
Strict.runStateT (k a) s'
instance (Bind m, Semigroup w) => Bind (Lazy.RWST r w s m) where
m >>- k = Lazy.RWST $ \r s ->
Lazy.runRWST m r s >>- \ ~(a, s', w) ->
Lazy.runRWST (k a) r s' `returning` \ ~(b, s'', w') ->
(b, s'', w <> w')
instance (Bind m, Semigroup w) => Bind (Strict.RWST r w s m) where
m >>- k = Strict.RWST $ \r s ->
Strict.runRWST m r s >>- \ (a, s', w) ->
Strict.runRWST (k a) r s' `returning` \ (b, s'', w') ->
(b, s'', w <> w')
instance Bind (ContT r m) where
m >>- k = ContT $ \c -> runContT m $ \a -> runContT (k a) c
instance Ord k => Bind (Map k) where
m >>- f = Map.mapMaybeWithKey (\k -> Map.lookup k . f) m
instance Bind IntMap where
m >>- f = IntMap.mapMaybeWithKey (\k -> IntMap.lookup k . f) m
instance Bind Seq where
(>>-) = (>>=)
instance Bind Tree where
(>>-) = (>>=)