-- | -- Module : Data.Semiring -- Description : Semirings -- Copyright : Copyright (c) 2012, Thomas Wilke, Frank Huch, Sebastian Fischer. -- Copyright (c) 2014-2016, Peter Harpending. -- License : BSD3 -- Maintainer : Peter Harpending <peter@harpending.org> -- Stability : experimental -- Portability : portable -- -- This library provides a type class for semirings. -- -- A semiring is an additive commutative monoid with identity 'zero': -- -- Most Haskellers are familiar with the 'Monoid' typeclass: -- -- > zero <+> a ≡ a -- > (a <+> b) <+> c ≡ a <+> (b <+> c) -- -- In this case, we've aliased -- -- > zero = mempty -- > (<+>) = mappend -- -- A commutative monoid adds the requirement of symmetry: -- -- > a <+> b ≡ b <+> a -- -- A semiring adds the requirement of a multiplication-like operator. However, -- it does not require the existence of multiplicative inverses, -- i.e. division. Moreover, multiplication does not need to be commutative. -- -- > one <.> a ≡ a -- > a <.> one ≡ a -- > (a <.> b) <.> c ≡ a <.> (b <.> c) -- -- Multiplication distributes over addition: -- -- > a <.> (b <+> c) ≡ (a <.> b) <+> (a <.> b) -- > (a <+> b) <>. c ≡ (a <.> c) <+> (b <.> c) -- -- 'zero' annihilates a semiring with respect to multiplication: -- -- > zero <.> a ≡ zero -- > a <.> zero ≡ zero -- -- The classic example of a semiring is the "Tropical numbers". The Tropical -- numbers, or T, are just real numbers with different operators. -- -- > zero = ∞ -- > a <+> b = minimum {a, b} -- > one = 0 -- > a <.> b = a + b -- -- We can easily verify that these satisfy the semiring axioms: -- -- First, the requirements for a commutative monoid -- -- > minimum {∞, a} ≡ minimum {a, ∞} ≡ a -- > minimum {a, ∞} ≡ a -- > minimum {a, b} ≡ minimum {b, a} -- > minimum {a, minimum{b, c}} ≡ minimum {minimum {a, b}, c} -- -- > 0 + a ≡ a -- > a + 0 ≡ a -- > a + (b + c) ≡ (a + b) + c -- > a + minimum {b, c} ≡ minimum {a + b, a + c} -- > minimum {a, b} + c ≡ minimum {a + c, b + c} -- > a + ∞ ≡ ∞ -- > ∞ + a ≡ ∞ module Data.Semiring where import Data.Monoid -- |Alias for 'mappend'. infixl 5 <+> (<+>) :: Monoid m => m -> m -> m (<+>) = mappend -- |Alias for 'mempty' zero :: Monoid m => m zero = mempty class Monoid m => Semiring m where one :: m (<.>) :: m -> m -> m