-- | A 'Field' is a 'Ring' in which all nonzero elements -- have a multiplicative inverse. module Data.Field ( -- * Field typeclass Field , divide , fromRational , recip , (/) ) where import Prelude hiding (fromInteger, fromRational, negate, quot, recip, (/)) import Data.Euclidean (Field, quot) import Data.Ratio (denominator, numerator) import Data.Semiring (fromInteger, one) --------------------------------------------------------------------- -- Functions --------------------------------------------------------------------- -- | Divide two elements of a 'Field'. -- For any 'Prelude.Fractional' type, this is the same as '(Prelude./)'. -- -- @x `divide` y = x `times` 'recip' y@ divide :: Field a => a -> a -> a divide = quot {-# INLINE divide #-} infixl 7 `divide` -- | Invert an element of a 'Field'. -- For any 'Prelude.Fractional' type, this is the same as 'Prelude.recip'. -- -- @'recip' x `times` x = 'one'@ recip :: Field a => a -> a recip = quot one {-# INLINE recip #-} -- | Infix shorthand for 'divide'. (/) :: Field a => a -> a -> a (/) = quot {-# INLINE (/) #-} infixl 7 / -- | Convert from rational to field. -- -- When @{-#@ @LANGUAGE RebindableSyntax #-}@ is enabled, -- this function is used for desugaring rational literals (like, @2.37@). -- This may be used to facilitate transition from 'Fractional' to 'Field', -- because less casts are now required. fromRational :: Field a => Rational -> a fromRational x = quot (fromInteger (numerator x)) (fromInteger (denominator x)) {-# INLINE fromRational #-}