{-# LANGUAGE RankNTypes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeOperators #-} module Language.SexpGrammar.Combinators ( -- ** Atom grammars bool , integer , int , real , double , string , symbol , keyword , string' , symbol' , enum , sym , kw -- ** Complex grammars , list , vect -- *** Sequence grammars , el , rest , props -- *** Property grammars , (.:) , (.:?) -- ** Utility grammars , pair , unpair , swap , coproduct ) where import Prelude hiding ((.), id) import Control.Category import Data.Data import Data.Semigroup (sconcat) import qualified Data.List.NonEmpty as NE import Data.Scientific import Data.StackPrism import Data.Text (Text, pack, unpack) import Data.InvertibleGrammar import Data.InvertibleGrammar.TH import Language.Sexp.Types import Language.Sexp.Utils (lispifyName) import Language.SexpGrammar.Base ---------------------------------------------------------------------- -- Sequence combinators -- | Define a sequence grammar inside a list list :: Grammar SeqGrammar t t' -> Grammar SexpGrammar (Sexp :- t) t' list = Inject . GList -- | Define a sequence grammar inside a vector vect :: Grammar SeqGrammar t t' -> Grammar SexpGrammar (Sexp :- t) t' vect = Inject . GVect -- | Define a sequence element grammar el :: Grammar SexpGrammar (Sexp :- a) b -> Grammar SeqGrammar a b el = Inject . GElem -- | Define a grammar for rest of the sequence rest :: Grammar SexpGrammar (Sexp :- a) (b :- a) -> Grammar SeqGrammar a ([b] :- a) rest = Inject . GRest -- | Define a property list grammar on the rest of the sequence. The -- remaining sequence must be empty or start with a keyword and its -- corresponding value and continue with the sequence built by the -- same rules. -- -- E.g. -- -- > :kw1 <val1> :kw2 <val2> ... :kwN <valN> props :: Grammar PropGrammar a b -> Grammar SeqGrammar a b props = Inject . GProps -- | Define property pair grammar (.:) :: Kw -> Grammar SexpGrammar (Sexp :- t) (a :- t) -> Grammar PropGrammar t (a :- t) (.:) name = Inject . GProp name -- | Define optional property pair grammar (.:?) :: Kw -> Grammar SexpGrammar (Sexp :- t) (a :- t) -> Grammar PropGrammar t (Maybe a :- t) (.:?) name g = coproduct [ $(grammarFor 'Just) . (name .: g) , $(grammarFor 'Nothing) ] ---------------------------------------------------------------------- -- Atom combinators -- | Define an atomic Bool grammar bool :: SexpG Bool bool = Inject . GAtom . Inject $ GBool -- | Define an atomic Integer grammar integer :: SexpG Integer integer = Inject . GAtom . Inject $ GInt -- | Define an atomic Int grammar int :: SexpG Int int = iso fromIntegral fromIntegral . integer -- | Define an atomic real number (Scientific) grammar real :: SexpG Scientific real = Inject . GAtom . Inject $ GReal -- | Define an atomic double precision floating point number (Double) grammar double :: SexpG Double double = iso toRealFloat fromFloatDigits . real -- | Define an atomic string (Text) grammar string :: SexpG Text string = Inject . GAtom . Inject $ GString -- | Define an atomic string ([Char]) grammar string' :: SexpG String string' = iso unpack pack . string -- | Define a grammar for a symbol (Text) symbol :: SexpG Text symbol = Inject . GAtom . Inject $ GSymbol -- | Define a grammar for a symbol ([Char]) symbol' :: SexpG String symbol' = iso unpack pack . symbol -- | Define a grammar for a keyword keyword :: SexpG Kw keyword = Inject . GAtom . Inject $ GKeyword -- | Define a grammar for an enumeration type. Automatically derives -- all symbol names from data constructor names and \"lispifies\" them. enum :: (Enum a, Bounded a, Eq a, Data a) => SexpG a enum = coproduct $ map (\a -> push a . sym (getEnumName a)) [minBound .. maxBound] where getEnumName :: (Data a) => a -> Text getEnumName = pack . lispifyName . showConstr . toConstr -- | Define a grammar for a constant symbol sym :: Text -> SexpG_ sym = Inject . GAtom . Inject . GSym -- | Define a grammar for a constant keyword kw :: Kw -> SexpG_ kw = Inject . GAtom . Inject . GKw ---------------------------------------------------------------------- -- Special combinators -- | Combine several alternative grammars into one grammar. Useful for -- defining grammars for sum types. -- -- E.g. consider a data type: -- -- > data Maybe a = Nothing | Just a -- -- A total grammar which would handle both cases should be constructed -- with 'coproduct' combinator or with @Semigroup@'s instance. -- -- > maybeGrammar :: SexpG a -> SexpG (Maybe a) -- > maybeGrammar g = -- > coproduct -- > [ $(grammarFor 'Nothing) . kw (Kw "nil") -- > , $(grammarFor 'Just) . g -- > ] coproduct :: [Grammar g a b] -> Grammar g a b coproduct = sconcat . NE.fromList -- | Construct pair from two top elements of stack pair :: Grammar g (b :- a :- t) ((a, b) :- t) -- | Deconstruct pair into two top elements of stack unpair :: Grammar g ((a, b) :- t) (b :- a :- t) (pair, unpair) = (Iso f g, Iso g f) where f = (\(b :- a :- t) -> (a, b) :- t) g = (\((a, b) :- t) -> (b :- a :- t)) -- | Swap two top elements of stack. Useful for defining grammars for -- data constructors with inconvenient field order. -- -- E.g. consider a data type, which has field order different from -- what would like to display to user: -- -- > data Command = Command { args :: [String], executable :: FilePath } -- -- In S-expression executable should go first: -- -- > commandGrammar = -- > $(grammarFor 'Command) . -- > list ( el (sym "call") >>> -- symbol "call" -- > el string' >>> -- executable name -- > rest string' >>> -- arguments -- > swap ) swap :: Grammar g (b :- a :- t) (a :- b :- t) swap = Iso (\(b :- a :- t) -> a :- b :- t) (\(a :- b :- t) -> b :- a :- t)