----------------------------------------------------------------------------- -- | -- Copyright : (C) 2015 Dimitri Sabadie -- License : BSD3 -- -- Maintainer : Dimitri Sabadie <dimitri.sabadie@gmail.com> -- Stability : experimental -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Spline.Polynomial ( -- * Polynomial Polynomial(unPolynomial) -- * Polynomials for interpolation , hold , linear , linearBy , cosine -- * Helpers , bsearchLower ) where import Control.Monad ( guard ) import Data.Spline.CP import Data.Vector as V ( Vector, (!?), length ) import Linear ( Additive(lerp) ) -- |A 'Polynomial' is used to interpolate in between a spline’s control points. newtype Polynomial s a = Polynomial { unPolynomial :: s -> Vector (CP s a) -> Maybe a} -- |Constant polynomial – a.k.a. /no interpolation/. -- -- Given two control points and a sample value in between, the 'hold' polynomial -- won’t perform any interpolation but it just /holds/ the value carried by the -- lower control point along the whole curve between the two control points. hold :: (Ord s) => Polynomial s a hold = Polynomial go where go s cps = do li <- bsearchLower (\(CP s' _) -> compare s s') cps CP _ r <- cps !? li return r -- |Parametric linear polynomial. -- -- This form applies a pre-filter on the input before performing a linear -- interpolation. Instead of: -- -- @ lerp x a b @ -- -- We have: -- -- @ lerp (pref x) a b @ -- -- This can be used to implement 1-degree splines if @pref = id@, basic cubic -- non-hermitian splines if @pref = (^3)@, cosine splines if -- @pref = \x -> (1 - cos (x*pi)) * 0.5@, and so on and so forth. linearBy :: (Additive a,Fractional s,Ord s) => (s -> s) -> Polynomial s (a s) linearBy pref = Polynomial go where go s cps = do li <- bsearchLower (\(CP s' _) -> compare s s') cps lower <- cps !? li upper <- cps !? succ li return $ lerp_ s lower upper lerp_ x (CP s0 a) (CP s1 b) = lerp x' b a where x' = (pref x - s0) / (s1 - s0) -- |1-degree polynomial – a.k.a. /straight line interpolation/, or /linear -- interpolation/. -- -- This polynomial connects control points with straight lines. -- -- Note: implemented with @linearBy id@. linear :: (Additive a,Fractional s,Ord s) => Polynomial s (a s) linear = linearBy id -- |Cosine polynomial. cosine :: (Additive a,Floating s,Ord s) => Polynomial s (a s) cosine = linearBy $ \x -> (1 - cos (x * pi)) * 0.5 -- |Helper binary search that search the ceiling index for the -- value to be searched according to the predicate. bsearchLower :: (a -> Ordering) -> Vector a -> Maybe Int bsearchLower p v = go 0 (pred $ V.length v) where go start end = do guard (start <= end) ma <- v !? m ma1 <- v !? succ m case p ma of LT -> go start (pred m) EQ -> Just m GT -> if p ma1 == LT then Just m else go (succ m) end where m = (end + start) `div` 2