Copyright | (c) 2019 Tobias Reinhart and Nils Alex |
---|---|
License | MIT |
Maintainer | tobi.reinhart@fau.de, nils.alex@fau.de |
Safe Haskell | None |
Language | Haskell2010 |
This module provides the metric, inverse metric, Christoffel symbol, Ricci tensor and Einstein tensor for the Schwarzschild spacetime as an example for tensor sections and partial derivatives thereof.
Synopsis
- schwarzschild :: Floating a => a -> STTens 0 2 (CFun [a] a)
- schwarzschild' :: Floating a => a -> STTens 2 0 (CFun [a] a)
- christoffel :: forall a. Floating a => a -> STTens 1 2 (CFun [a] a)
- ricci :: forall a. Floating a => a -> STTens 0 2 (CFun [a] a)
- einstein :: forall a. Floating a => a -> STTens 0 2 (CFun [a] a)
Documentation
schwarzschild :: Floating a => a -> STTens 0 2 (CFun [a] a) Source #
Schwarzschild metric \( g = (1-\frac{r_\text{s}}{r})\,\mathrm dt\otimes\mathrm dt - \frac{1}{1-\frac{r_\text{s}}{r}}\,\mathrm dr\otimes \mathrm dr - r^2\,\mathrm d\theta\otimes \mathrm d\theta - r^2\sin^2\theta\,\mathrm d\phi\otimes \mathrm d\phi \).
schwarzschild' :: Floating a => a -> STTens 2 0 (CFun [a] a) Source #
Inverse Schwarzschild metric \( g = \frac{1}{1-\frac{r_\text{s}}{r}}\,\partial_t \otimes \partial_t - (1-\frac{r_\text{s}}{r})\,\partial_r \otimes \partial_r - \frac{1}{r^2}\,\partial_\theta \otimes \partial_\theta - \frac{1}{r^2\sin^2\theta}\,\partial_\phi \otimes \partial_\phi \).
christoffel :: forall a. Floating a => a -> STTens 1 2 (CFun [a] a) Source #
Christoffel symbol of the Schwarzschild metric.