module SpatialMathT
( ArcTan2(..)
, Euler(..)
, Quaternion(..), V3(..)
, Rotation(..)
, Rot(..)
, V3T(..)
, R1(..), R2(..), R3(..)
, cross
, orthonormalize
, dcmOfQuat
, dcmOfEuler321
, quatOfDcm
, quatOfEuler321
, euler321OfDcm
, unsafeEuler321OfDcm
, euler321OfQuat
, unsafeEuler321OfQuat
, (:.)(..), unO
) where
import Control.Applicative ( Applicative )
import Control.Compose ( (:.)(..), unO )
import Data.Foldable ( Foldable )
import Data.Binary ( Binary(..) )
import Data.Serialize ( Serialize(..) )
import Data.Traversable ( Traversable )
import Foreign.Storable ( Storable )
import GHC.Generics ( Generic, Generic1 )
import Linear hiding ( cross, normalize, transpose )
import qualified Linear as L
import SpatialMath ( ArcTan2(..), Euler(..) )
import qualified SpatialMath as SM
newtype V3T f a = V3T {unV :: V3 a}
deriving ( Functor, Foldable, Traversable
, Applicative
, Additive, Metric, Storable
, Num, Fractional, Eq, Show, Ord
, Generic1, Generic
, Serialize, Binary
)
instance R1 (V3T f) where
_x f (V3T v) = fmap V3T $ _x f v
instance R2 (V3T f) where
_y f (V3T v) = fmap V3T $ _y f v
_xy f (V3T v) = fmap V3T $ _xy f v
instance R3 (V3T f) where
_z f (V3T v) = fmap V3T $ _z f v
_xyz f (V3T v) = fmap V3T $ _xyz f v
cross :: Num a => V3T f a -> V3T f a -> V3T f a
cross (V3T vx) (V3T vy) = V3T (vx `L.cross` vy)
newtype Rot f1 f2 r a =
Rot { unRot :: r a }
deriving ( Functor, Foldable, Traversable
, Storable
, Num, Fractional, Eq, Show, Ord
, Generic1, Generic
, Serialize, Binary
)
class Rotation g a where
compose :: Rot f1 f2 g a -> Rot f2 f3 g a -> Rot f1 f3 g a
rot :: Rot f1 f2 g a -> V3T f1 a -> V3T f2 a
rot' :: Rot f1 f2 g a -> V3T f2 a -> V3T f1 a
transpose :: Rot f1 f2 g a -> Rot f2 f1 g a
identity :: Rot f1 f2 g a
instance Num a => Rotation Quaternion a where
compose (Rot q_a2b) (Rot q_b2c) = Rot (q_a2b `quatMult` q_b2c)
where
quatMult :: Num a => Quaternion a -> Quaternion a -> Quaternion a
quatMult (Quaternion s1 v1) (Quaternion s2 v2) =
Quaternion (s1*s2 (v1 `dot` v2)) $
(v1 `L.cross` v2) + s1*^v2 + s2*^v1
rot (Rot q_a2b) (V3T va) = V3T (SM.rotVecByQuat q_a2b va)
rot' (Rot q_a2b) (V3T vb) = V3T (SM.rotVecByQuatB2A q_a2b vb)
transpose (Rot (Quaternion q0 qxyz)) = Rot (Quaternion q0 (fmap negate qxyz))
identity = Rot (Quaternion 1 (pure 0))
instance Num a => Rotation (V3 :. V3) a where
compose (Rot (O dcm_a2b)) (Rot (O dcm_b2c)) = Rot $ O (dcm_b2c !*! dcm_a2b)
rot (Rot (O dcm_a2b)) (V3T va) = V3T (SM.rotVecByDcm dcm_a2b va)
rot' (Rot (O dcm_a2b)) (V3T vb) = V3T (SM.rotVecByDcmB2A dcm_a2b vb)
transpose
(Rot
(O
(V3
(V3 e11 e12 e13)
(V3 e21 e22 e23)
(V3 e31 e32 e33)))) =
Rot $ O $
V3
(V3 e11 e21 e31)
(V3 e12 e22 e32)
(V3 e13 e23 e33)
identity =
Rot $ O $
V3
(V3 1 0 0)
(V3 0 1 0)
(V3 0 0 1)
dcmOfQuat :: Num a => Rot f g Quaternion a -> Rot f g (V3 :. V3) a
dcmOfQuat = Rot . O . SM.dcmOfQuat . unRot
dcmOfEuler321 :: Floating a => Rot f g Euler a -> Rot f g (V3 :. V3) a
dcmOfEuler321 = Rot . O . SM.dcmOfEuler321 . unRot
quatOfDcm :: Floating a => Rot f g (V3 :. V3) a -> Rot f g Quaternion a
quatOfDcm = Rot . SM.quatOfDcm . unO . unRot
quatOfEuler321 :: Floating a => Rot f g Euler a -> Rot f g Quaternion a
quatOfEuler321 = Rot . SM.quatOfEuler321 . unRot
unsafeEuler321OfDcm :: ArcTan2 a => Rot f g (V3 :. V3) a -> Rot f g Euler a
unsafeEuler321OfDcm = Rot . SM.unsafeEuler321OfDcm . unO . unRot
euler321OfDcm :: (ArcTan2 a, Ord a) => Rot f g (V3 :. V3) a -> Rot f g Euler a
euler321OfDcm = Rot . SM.euler321OfDcm . unO . unRot
euler321OfQuat :: (ArcTan2 a, Ord a) => Rot f g Quaternion a -> Rot f g Euler a
euler321OfQuat = Rot . SM.euler321OfQuat . unRot
unsafeEuler321OfQuat :: ArcTan2 a => Rot f g Quaternion a -> Rot f g Euler a
unsafeEuler321OfQuat = Rot . SM.unsafeEuler321OfQuat . unRot
instance (ArcTan2 a, Floating a, Ord a) => Rotation Euler a where
compose e_a2b e_b2c = euler321OfQuat q_a2c
where
q_a2b = quatOfEuler321 e_a2b
q_b2c = quatOfEuler321 e_b2c
q_a2c = compose q_a2b q_b2c
rot (Rot e_a2b) (V3T va) = V3T (SM.rotVecByEuler e_a2b va)
rot' (Rot e_a2b) (V3T vb) = V3T (SM.rotVecByEulerB2A e_a2b vb)
transpose = euler321OfQuat . transpose . quatOfEuler321
identity = Rot (Euler 0 0 0)
orthonormalize :: Floating a => Rot f1 f2 (V3 :. V3) a -> Rot f1 f2 (V3 :. V3) a
orthonormalize
(Rot
(O
(V3
(V3 m00 m01 m02)
(V3 m10 m11 m12)
(V3 m20 m21 m22)))) = Rot (O ret)
where
fInvLength0 = 1.0/sqrt(m00*m00 + m10*m10 + m20*m20)
m00' = m00*fInvLength0
m10' = m10*fInvLength0
m20' = m20*fInvLength0
fDot0' = m00'*m01 + m10'*m11 + m20'*m21
m01' = m01 fDot0'*m00'
m11' = m11 fDot0'*m10'
m21' = m21 fDot0'*m20'
fInvLength1 = 1.0/sqrt(m01'*m01' + m11'*m11' + m21'*m21')
m01'' = m01' * fInvLength1
m11'' = m11' * fInvLength1
m21'' = m21' * fInvLength1
fDot1 = m01''*m02 + m11''*m12 + m21''*m22
fDot0 = m00'*m02 + m10'*m12 + m20'*m22
m02' = m02 (fDot0*m00' + fDot1*m01'')
m12' = m12 (fDot0*m10' + fDot1*m11'')
m22' = m22 (fDot0*m20' + fDot1*m21'')
fInvLength2 = 1.0/sqrt(m02'*m02' + m12'*m12' + m22'*m22')
m02'' = m02' * fInvLength2
m12'' = m12' * fInvLength2
m22'' = m22' * fInvLength2
ret = (V3
(V3 m00' m01'' m02'')
(V3 m10' m11'' m12'')
(V3 m20' m21'' m22''))