{-# LANGUAGE RankNTypes #-} {-# OPTIONS_GHC -Wall #-} module Streaming ( -- * An iterable streaming monad transformer -- $stream Stream, -- * Constructing a 'Stream' on a given functor yields, effect, wrap, replicates, repeats, repeatsM, unfold, never, untilJust, streamBuild, delays, -- * Transforming streams maps, mapsPost, mapsM, mapsMPost, mapped, mappedPost, hoistUnexposed, distribute, groups, -- * Inspecting a stream inspect, -- * Splitting and joining 'Stream's splitsAt, takes, chunksOf, concats, intercalates, cutoff, -- period, -- periods, -- * Zipping, unzipping, separating and unseparating streams zipsWith, zipsWith', zips, unzips, interleaves, separate, unseparate, decompose, expand, expandPost, -- * Eliminating a 'Stream' mapsM_, run, streamFold, iterTM, iterT, destroy, -- * Base functor for streams of individual items Of (..), lazily, strictly, -- * re-exports MFunctor(..), MMonad(..), MonadTrans(..), MonadIO(..), Compose(..), Sum(..), Identity(..), Alternative((<|>)), Bifunctor(..), join, liftM, liftM2, liftA2, liftA3, void, (<>) ) where import Streaming.Internal import Streaming.Prelude import Control.Monad.Morph import Control.Monad import Data.Monoid ((<>)) import Control.Applicative import Control.Monad.Trans import Data.Functor.Compose import Data.Functor.Sum import Data.Functor.Identity import Data.Bifunctor {- $stream The 'Stream' data type can be used to represent any effectful succession of steps arising in some monad. The form of the steps is specified by the first (\"functor\") parameter in @Stream f m r@. The monad of the underlying effects is expressed by the second parameter. This module exports combinators that pertain to that general case. Some of these are quite abstract and pervade any use of the library, e.g. > maps :: (forall x . f x -> g x) -> Stream f m r -> Stream g m r > mapped :: (forall x . f x -> m (g x)) -> Stream f m r -> Stream g m r > hoist :: (forall x . m x -> n x) -> Stream f m r -> Stream f n r -- from the MFunctor instance > concats :: Stream (Stream f m) m r -> Stream f m r (assuming here and thoughout that @m@ or @n@ satisfies a @Monad@ constraint, and @f@ or @g@ a @Functor@ constraint.) Others are surprisingly determinate in content: > chunksOf :: Int -> Stream f m r -> Stream (Stream f m) m r > splitsAt :: Int -> Stream f m r -> Stream f m (Stream f m r) > zipsWith :: (forall x y. f x -> g y -> h (x, y)) -> Stream f m r -> Stream g m r -> Stream h m r > zipsWith' :: (forall x y p. (x -> y -> p) -> f x -> g y -> h p) -> Stream f m r -> Stream g m r -> Stream h m r > intercalates :: Stream f m () -> Stream (Stream f m) m r -> Stream f m r > unzips :: Stream (Compose f g) m r -> Stream f (Stream g m) r > separate :: Stream (Sum f g) m r -> Stream f (Stream g) m r -- cp. partitionEithers > unseparate :: Stream f (Stream g) m r -> Stream (Sum f g) m r > groups :: Stream (Sum f g) m r -> Stream (Sum (Stream f m) (Stream g m)) m r One way to see that /any/ streaming library needs some such general type is that it is required to represent the segmentation of a stream, and to express the equivalents of @Prelude/Data.List@ combinators that involve 'lists of lists' and the like. See for example this <http://www.haskellforall.com/2013/09/perfect-streaming-using-pipes-bytestring.html post> on the correct expression of a streaming \'lines\' function. The module @Streaming.Prelude@ exports combinators relating to > Stream (Of a) m r where @Of a r = !a :> r@ is a left-strict pair. This expresses the concept of a 'Producer' or 'Source' or 'Generator' and easily inter-operates with types with such names in e.g. 'conduit', 'iostreams' and 'pipes'. -} {-| Map a stream to its church encoding; compare @Data.List.foldr@ Typical @FreeT@ operators can be defined in terms of @destroy@ e.g. > iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> Stream f m a -> m a > iterT out stream = destroy stream out join return > iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> Stream f m a -> t m a > iterTM out stream = destroy stream out (join . lift) return > concats :: (Monad m, MonadTrans t, Monad (t m)) => Stream (t m) m a -> t m a > concats stream = destroy stream join (join . lift) return -}