{-# LANGUAGE ForeignFunctionInterface, TypeSynonymInstances #-} -- | -- Copyright : Anders Claesson 2013-2016 -- Maintainer : Anders Claesson <anders.claesson@gmail.com> -- -- Generating permutations: rank and unrank module Sym.Perm ( module Sym.Internal.CLongArray , Perm , emptyperm , one , idperm , ebb , mkPerm , rank , unrank , perms ) where import Data.List import Sym.Internal.CLongArray import Foreign import Foreign.C.Types import System.IO.Unsafe -- | A permutation is just a 'CLongArray'. By convention a permutation -- of size @n@ is understood to be a permutation of @[0..n-1]@. type Perm = CLongArray -- | The unique permutation length zero. emptyperm :: Perm emptyperm = fromList [] -- | The unique permutation length one. one :: Perm one = fromList [0] -- | The identity permutation. idperm :: Int -> Perm idperm n = fromList [0 .. n-1] -- | The reverse of the identity permutation. ebb :: Int -> Perm ebb n = fromList [n-1,n-2..0] -- | Construct a permutation from a list of elements. As opposed to -- 'fromList' this is a safe function in the sense that the output of -- @mkPerm xs@ is guaranteed to be a permutation of @[0..length xs-1]@. -- E.g., @mkPerm \"baxa\" == fromList [2,0,3,1]@. mkPerm :: Ord a => [a] -> Perm mkPerm xs = let sti ys = map snd . sort $ zip ys [0::Int ..] in fromList $ (sti . sti) xs foreign import ccall unsafe "rank.h rank" c_rank :: Ptr CLong -> CLong -> IO CDouble -- | The rank of the given permutation, where the rank is defined as -- in [W. Myrvold and F. Ruskey, Ranking and Unranking Permutations in -- Linear Time, Information Processing Letters, 79 (2001) 281-284]. rank :: Perm -> Integer rank w = let n = fromIntegral (size w) in truncate . unsafePerformIO . unsafeWith w $ flip c_rank n {-# INLINE rank #-} foreign import ccall unsafe "rank.h unrank" c_unrank :: Ptr CLong -> CLong -> CDouble -> IO () -- | The permutation of size @n@ whose rank is @r@, where the rank -- is defined as in [W. Myrvold and F. Ruskey, Ranking and Unranking -- Permutations in Linear Time, Information Processing Letters, 79 -- (2001) 281-284]. unrank :: Int -> Integer -> Perm unrank n r = unsafePerformIO . unsafeNew n $ \ptr -> c_unrank ptr (fromIntegral n) (fromIntegral r) {-# INLINE unrank #-} -- | All permutations of a given size. perms :: Int -> [Perm] perms n = map (unrank n) [0..nFac-1] where nFac = product [1..toInteger n]