module Synthesizer.Interpolation.Module (
T,
constant,
linear,
cubic,
cubicAlt,
piecewise,
piecewiseConstant,
piecewiseLinear,
piecewiseCubic,
function,
) where
import qualified Synthesizer.State.Signal as Sig
import qualified Synthesizer.Plain.Control as Ctrl
import qualified Synthesizer.Interpolation.Core as Core
import Synthesizer.Interpolation (
T, cons, getNode, fromPrefixReader,
constant,
)
import qualified Algebra.Module as Module
import qualified Algebra.Field as Field
import Control.Applicative.HT (liftA4, )
import Control.Applicative (liftA2, )
import NumericPrelude.Numeric
import NumericPrelude.Base
linear :: (Module.C t y) => T t y
linear =
fromPrefixReader "linear" 0
(liftA2 Core.linear getNode getNode)
cubic :: (Field.C t, Module.C t y) => T t y
cubic =
fromPrefixReader "cubic" 1
(liftA4 Core.cubic getNode getNode getNode getNode)
cubicAlt :: (Field.C t, Module.C t y) => T t y
cubicAlt =
fromPrefixReader "cubicAlt" 1
(liftA4 Core.cubicAlt getNode getNode getNode getNode)
piecewise :: (Module.C t y) =>
Int -> [t -> t] -> T t y
piecewise center ps =
cons (length ps) (center1)
(\t -> Sig.linearComb (Sig.fromList (map ($t) (reverse ps))))
piecewiseConstant :: (Module.C t y) => T t y
piecewiseConstant =
piecewise 1 [const 1]
piecewiseLinear :: (Module.C t y) => T t y
piecewiseLinear =
piecewise 1 [id, (1)]
piecewiseCubic :: (Field.C t, Module.C t y) => T t y
piecewiseCubic =
piecewise 2 $
Ctrl.cubicFunc (0,(0,0)) (1,(0,1/2)) :
Ctrl.cubicFunc (0,(0,1/2)) (1,(1,0)) :
Ctrl.cubicFunc (0,(1,0)) (1,(0,1/2)) :
Ctrl.cubicFunc (0,(0,1/2)) (1,(0,0)) :
[]
function :: (Module.C t y) =>
(Int,Int)
-> (t -> t)
-> T t y
function (left,right) f =
let len = left+right
ps = Sig.take len $ Sig.iterate pred (pred right)
in cons len left
(\t -> Sig.linearComb $
Sig.map (\x -> f (t + fromIntegral x)) ps)