module Synthesizer.Plain.Control (
constant,
linear,
linearMultiscale,
linearMultiscaleNeutral,
linearStable,
linearMean,
line,
exponential, exponentialMultiscale, exponentialStable,
exponentialMultiscaleNeutral,
exponential2, exponential2Multiscale, exponential2Stable,
exponential2MultiscaleNeutral,
exponentialFromTo, exponentialFromToMultiscale,
vectorExponential,
vectorExponential2,
cosine, cosineMultiscale, cosineSubdiv, cosineStable,
cubicHermite,
cubicHermiteStable,
curveMultiscale,
curveMultiscaleNeutral,
cubicFunc,
cosineWithSlope,
) where
import qualified Synthesizer.Plain.Signal as Sig
import Data.List (zipWith4, tails, )
import Data.List.HT (iterateAssociative, )
import qualified Algebra.Module as Module
import qualified Algebra.Transcendental as Trans
import qualified Algebra.Field as Field
import qualified Algebra.Ring as Ring
import qualified Algebra.Additive as Additive
import Number.Complex (cis,real, )
import NumericPrelude.Numeric
import NumericPrelude.Base
constant :: y -> Sig.T y
constant = repeat
linear :: Additive.C y =>
y
-> y
-> Sig.T y
linear d y0 = iterate (d+) y0
linearMultiscale :: Additive.C y =>
y
-> y
-> Sig.T y
linearMultiscale = curveMultiscale (+)
linearMultiscaleNeutral :: Additive.C y =>
y
-> Sig.T y
linearMultiscaleNeutral slope =
curveMultiscaleNeutral (+) slope zero
linearStable :: Ring.C y =>
y
-> y
-> Sig.T y
linearStable d y0 =
curveStable (d*) (+) 1 y0
linearMean :: Field.C y =>
y
-> y
-> Sig.T y
linearMean d y0 = y0 :
foldr (\pow xs -> y0+pow : linearSubdivision xs)
unreachable (iterate (2*) d)
linearSubdivision :: Field.C y =>
Sig.T y
-> Sig.T y
linearSubdivision = subdivide (\x0 x1 -> (x0+x1)/2)
line :: Field.C y =>
Int
-> (y,y)
-> Sig.T y
line n (y0,y1) =
take n $ linear ((y1y0) / fromIntegral n) y0
exponential, exponentialMultiscale, exponentialStable :: Trans.C y =>
y
-> y
-> Sig.T y
exponential time = iterate (* exp ( recip time))
exponentialMultiscale time = curveMultiscale (*) (exp ( recip time))
exponentialStable time = exponentialStableGen exp ( recip time)
exponentialMultiscaleNeutral :: Trans.C y =>
y
-> Sig.T y
exponentialMultiscaleNeutral time =
curveMultiscaleNeutral (*) (exp ( recip time)) one
exponential2, exponential2Multiscale, exponential2Stable :: Trans.C y =>
y
-> y
-> Sig.T y
exponential2 halfLife = iterate (* 0.5 ** recip halfLife)
exponential2Multiscale halfLife = curveMultiscale (*) (0.5 ** recip halfLife)
exponential2Stable halfLife = exponentialStableGen (0.5 **) (recip halfLife)
exponential2MultiscaleNeutral :: Trans.C y =>
y
-> Sig.T y
exponential2MultiscaleNeutral halfLife =
curveMultiscaleNeutral (*) (0.5 ** recip halfLife) one
exponentialFromTo, exponentialFromToMultiscale :: Trans.C y =>
y
-> y
-> y
-> Sig.T y
exponentialFromTo time y0 y1 =
iterate (* (y1/y0) ** recip time) y0
exponentialFromToMultiscale time y0 y1 =
curveMultiscale (*) ((y1/y0) ** recip time) y0
exponentialStableGen :: (Ring.C y, Ring.C t) =>
(t -> y)
-> t
-> y
-> Sig.T y
exponentialStableGen expFunc = curveStable expFunc (*)
vectorExponential :: (Trans.C y, Module.C y v) =>
y
-> v
-> Sig.T v
vectorExponential time y0 = iterate (exp (1/time) *>) y0
vectorExponential2 :: (Trans.C y, Module.C y v) =>
y
-> v
-> Sig.T v
vectorExponential2 halfLife y0 = iterate (0.5**(1/halfLife) *>) y0
cosine, cosineMultiscale, cosineSubdiv, cosineStable :: Trans.C y =>
y
-> y
-> Sig.T y
cosine = cosineWithSlope $
\d x -> map cos (linear d x)
cosineMultiscale = cosineWithSlope $
\d x -> map real (curveMultiscale (*) (cis d) (cis x))
cosineSubdiv =
let aux d y0 =
cos y0 :
foldr (\pow xs -> cos(y0+pow) : cosineSubdivision pow xs)
unreachable (iterate (2*) d)
in cosineWithSlope aux
cosineSubdivision :: Trans.C y =>
y
-> Sig.T y
-> Sig.T y
cosineSubdivision angle =
let k = recip (2 * cos angle)
in subdivide (\x0 x1 -> (x0+x1)*k)
cosineStable = cosineWithSlope $
\d x -> map real (exponentialStableGen cis d (cis x))
cosineWithSlope :: Trans.C y =>
(y -> y -> signal)
-> y
-> y
-> signal
cosineWithSlope c t0 t1 =
let inc = pi/(t1t0)
in c inc (t0*inc)
cubicHermite :: Field.C y => (y, (y,y)) -> (y, (y,y)) -> Sig.T y
cubicHermite node0 node1 =
map (cubicFunc node0 node1) (linear 1 0)
cubicFunc :: Field.C y => (y, (y,y)) -> (y, (y,y)) -> y -> y
cubicFunc (t0, (y0,dy0)) (t1, (y1,dy1)) t =
let dt = t0t1
dt0 = tt0
dt1 = tt1
x0 = dt1^2
x1 = dt0^2
in ((dy0*dt0 + y0 * (12/dt*dt0)) * x0 +
(dy1*dt1 + y1 * (1+2/dt*dt1)) * x1) / dt^2
cubicHermiteStable :: Field.C y => (y, (y,y)) -> (y, (y,y)) -> Sig.T y
cubicHermiteStable node0 node1 =
cubicFunc node0 node1 0 :
foldr (\pow xs ->
cubicFunc node0 node1 pow : head xs :
cubicFunc node0 node1 (3*pow) : cubicSubdivision xs)
unreachable (iterate (2*) 1)
cubicSubdivision :: Field.C y => Sig.T y -> Sig.T y
cubicSubdivision xs =
let xs0:xs1:xs2:xs3:_ = tails xs
inter = zipWith4 (\x0 x1 x2 x3 -> (9*(x1+x2) (x0+x3))/16)
xs0 xs1 xs2 xs3
in head xs1 : flattenPairs (zip inter xs2)
curveStable :: (Additive.C t) =>
(t -> y)
-> (y -> y -> y)
-> t
-> y
-> Sig.T y
curveStable expFunc op time y0 =
y0 : map (op y0)
(foldr
(\e xs ->
let k = expFunc e
in k : concatMapPair (\x -> (x, op x k)) xs)
unreachable (iterate double time))
unreachable :: a
unreachable = error "only reachable in infinity"
double :: Additive.C t => t -> t
double t = t+t
concatMapPair :: (a -> (b,b)) -> Sig.T a -> Sig.T b
concatMapPair f = flattenPairs . map f
flattenPairs :: Sig.T (a,a) -> Sig.T a
flattenPairs = foldr (\(a,b) xs -> a:b:xs) []
subdivide :: (y -> y -> y) -> Sig.T y -> Sig.T y
subdivide f xs0@(x:xs1) =
x : flattenPairs (zipWith (\x0 x1 -> (f x0 x1, x1)) xs0 xs1)
subdivide _ [] = []
_concatMapPair :: (a -> (b,b)) -> Sig.T a -> Sig.T b
_concatMapPair f = concatMap ((\(x,y) -> [x,y]) . f)
curveMultiscale :: (y -> y -> y) -> y -> y -> Sig.T y
curveMultiscale op d y0 =
y0 : map (op y0) (iterateAssociative op d)
curveMultiscaleNeutral :: (y -> y -> y) -> y -> y -> Sig.T y
curveMultiscaleNeutral op d neutral =
neutral : iterateAssociative op d