module Data.Thorn.Internal (
Unique, unique
, newVar, newSubvar, newFunc, newFmap
, newVarP, newSubvarP, newFuncP, newFmapP
, newVarE, newSubvarE, newFuncE, newFmapE
, mkNameE, mkNameCE, mkNameP, mkNameTx
, idE
, applistE, applistT, applistTx, appTx
, Typex(..)
, Conx
, cxtxs
, type2typex, typex2type, normalizetype
, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
, applySpecial, applyFixed, applyFixed'
, gendec1, gendec2
, modifyname, fixname
) where
import Language.Haskell.TH
import Data.Char
import Data.List
import Data.Maybe
import Control.Monad
import Control.Monad.Trans
import Control.Applicative
import System.Random
instance MonadIO Q where
liftIO = runIO
type Unique = Int
unique :: MonadIO m => m Unique
unique = liftIO $ getStdRandom (randomR (0,1000000000))
newVar, newSubvar, newFunc, newFmap :: Int -> Name
newVarP, newSubvarP, newFuncP, newFmapP :: Int -> Pat
newVarE, newSubvarE, newFuncE, newFmapE :: Int -> Exp
newVar n = mkName $ "var" ++ show n
newVarP = VarP . newVar
newVarE = VarE . newVar
newSubvar n = mkName $ "subvar" ++ show n
newSubvarP = VarP . newSubvar
newSubvarE = VarE . newSubvar
newFunc n = mkName $ "func" ++ show n
newFuncP = VarP . newFunc
newFuncE = VarE . newFunc
newFmap n = mkName $ "fmap" ++ show n
newFmapP = VarP . newFmap
newFmapE = VarE . newFmap
mkNameE, mkNameCE :: String -> Exp
mkNameP :: String -> Pat
mkNameTx :: String -> Typex
mkNameE = VarE . mkName
mkNameCE = ConE . mkName
mkNameP = VarP . mkName
mkNameTx = VarTx . mkName
idE :: Exp
idE = mkNameE "Prelude.id"
applistE :: Exp -> [Exp] -> Exp
applistT :: Type -> [Type] -> Type
applistTx :: Typex -> [Typex] -> TypexQ
applistE e es = foldl (\e1 e2 -> AppE e1 e2) e es
applistT t ts = foldl (\t1 t2 -> AppT t1 t2) t ts
applistTx tx txs = foldM (\tx1 tx2 -> appTx tx1 tx2) tx txs
appTx :: Typex -> Typex -> TypexQ
appTx (FuncTx f) tx = f tx
appTx _ _ = fail "appTx : Thorn doesn't work well, sorry."
data Typex =
VarTx Name
| BasicTx Name
| FixedTx Int
| SpecialTx Int
| NotTx
| FuncTx (Typex -> TypexQ)
| DataTx Name VarMap [Conx]
| SeenDataTx Name VarMap
| TupleTx [Typex]
| ArrowTx Typex Typex
| ListTx Typex
type TypexQ = Q Typex
type Conx = (Name,[Typex])
cxtxs :: Conx -> [Typex]
cxtxs = snd
type VarMap = [(Name,Typex)]
type Datas = [(Name,VarMap)]
instance Eq Typex where
VarTx t == VarTx t' = t==t'
BasicTx nm == BasicTx nm' = nm==nm'
SpecialTx n == SpecialTx n' = n==n'
FixedTx n == FixedTx n' = n==n'
NotTx == NotTx = True
DataTx nm vmp cons == DataTx nm' vmp' cons' = nm==nm'&&vmp==vmp'&&cons==cons'
SeenDataTx nm vmp == SeenDataTx nm' vmp' = nm==nm'&&vmp==vmp'
TupleTx txs == TupleTx txs' = txs==txs'
ArrowTx txa txb == ArrowTx txa' txb' = txa==txa'&&txb==txb'
ListTx tx == ListTx tx' = tx==tx'
_ == _ = False
instance Show Typex where
show (DataTx _ _ _) = "DataTx"
show (SeenDataTx _ _) = "SeenDataTx"
show _ = "Foo"
type2typex :: VarMap -> Datas -> Type -> TypexQ
type2typex vmp dts (ForallT tvs _ t) = type2typex vmp' dts t
where vmp' = filter (\(nm,_) -> notElem nm (map nameTV tvs)) vmp
type2typex vmp dts (AppT t u) = do
FuncTx f <- type2typex vmp dts t
ux <- type2typex vmp dts u
f ux
type2typex vmp dts (SigT t _) = type2typex vmp dts t
type2typex vmp _ (VarT nm) = case (find (\(nm',_) -> nm==nm') vmp) of
Nothing -> return $ VarTx nm
Just (_,tx) -> return tx
type2typex vmp dts (ConT nm)
| s == "()" = type2typex vmp dts (TupleT 0)
| head s == '(' && dropWhile (==',') (tail s) == ")" = type2typex vmp dts (TupleT (length s 1))
| s == "(->)" = type2typex vmp dts ArrowT
| s == "[]" = type2typex vmp dts ListT
| elem s ["Int","Word","Float","Double","Char","Ptr","FunPtr"] = return $ BasicTx nm
| otherwise = reify nm >>= go
where s = nameBase nm
go (TyConI (TySynD _ tvs u)) = ho (length tvs) []
where ho 0 txs = type2typex (zip (map nameTV tvs) (reverse txs)) dts u
ho n txs = return $ FuncTx $ \tx -> ho (n1) (tx:txs)
go (TyConI (DataD _ nm' tvs cons _)) = do
b <- istypevariant nm'
if b then tofixed nm' else ho (length tvs) []
where ho 0 txs = fromData nm' (zip (map nameTV tvs) (reverse txs)) dts cons
ho n txs = return $ FuncTx $ \tx -> ho (n1) (tx:txs)
go (TyConI (NewtypeD _ _ tvs con _)) = ho (length tvs) []
where ho 0 txs = fromData nm (zip (map nameTV tvs) (reverse txs)) dts [con]
ho n txs = return $ FuncTx $ \tx -> ho (n1) (tx:txs)
go (PrimTyConI _ _ _) = fail "type2typex : Thorn doesn't support such primitive types, sorry."
go (FamilyI _ _) = fail "type2typex : Thorn doesn't support type families, sorry."
go _ = fail "type2typex : Thorn doesn't work well, sorry."
type2typex _ _ (TupleT n) = go n []
where go 0 txs = return $ TupleTx (reverse txs)
go k txs = return $ FuncTx $ \tx -> go (k1) (tx:txs)
type2typex _ _ ArrowT = return $ FuncTx $ \txa -> return $ FuncTx $ \txb -> return $ ArrowTx txa txb
type2typex _ _ ListT = return $ FuncTx $ \tx -> return $ ListTx tx
type2typex _ _ _ = fail "type2typex : Thorn doesn't support such types, sorry."
fromData :: Name -> VarMap -> Datas -> [Con] -> TypexQ
fromData nm vmp dts cons = case find (\(nm',_)->nm==nm') dts of
Just (_,vmp')
| vmp == vmp' -> return $ SeenDataTx nm vmp
| otherwise -> fail "fromData : Thorn doesn't support irregular types, sorry."
Nothing -> DataTx nm vmp <$> mapM con2conx cons
where dts' = (nm,vmp) : dts
con2conx (NormalC nm' sts) = (,) nm' <$> mapM stype2typex sts
con2conx (RecC nm' vsts) = (,) nm' <$> mapM vstype2typex vsts
con2conx (InfixC sta nm' stb) = do
txa <- stype2typex sta
txb <- stype2typex stb
return (nm',[txa,txb])
con2conx (ForallC _ _ _) = fail "fromData : Thorn doesn't support existential types, sorry."
stype2typex (_,t) = type2typex vmp dts' t
vstype2typex (_,_,t) = type2typex vmp dts' t
nameTV :: TyVarBndr -> Name
nameTV (PlainTV nm) = nm
nameTV (KindedTV nm _) = nm
typex2type :: Typex -> TypeQ
typex2type (VarTx nm) = return $ VarT nm
typex2type (SpecialTx _) = return StarT
typex2type (FixedTx n) = return $ VarT (mkName $ "t" ++ show n)
typex2type NotTx = return StarT
typex2type (FuncTx f) = do
AppT t StarT <- typex2type =<< f NotTx
return t
typex2type (DataTx nm vmp _) = do
ts <- mapM (typex2type . snd) vmp
return $ applistT (ConT nm) ts
typex2type (SeenDataTx nm vmp) = do
ts <- mapM (typex2type . snd) vmp
return $ applistT (ConT nm) ts
typex2type (BasicTx nm) = return $ ConT nm
typex2type (TupleTx txs) = do
ts <- mapM typex2type txs
return $ applistT (TupleT (length txs)) ts
typex2type (ArrowTx txa txb) = do
ta <- typex2type txa
tb <- typex2type txb
return $ applistT ArrowT [ta,tb]
typex2type (ListTx tx) = do
t <- typex2type tx
return $ AppT ListT t
normalizetype :: Type -> TypeQ
normalizetype t = typex2type =<< type2typex [] [] t
data T0
data T1
data T2
data T3
data T4
data T5
data T6
data T7
data T8
data T9
typevariants :: Q [Name]
typevariants = mapM (\n -> getnm <$> (reify . mkName $ 'T' : show n)) ([0..9] :: [Int])
where getnm (TyConI (DataD _ nm _ _ _)) = nm
getnm _ = error "typevariants : Thorn doesn't work well, sorry."
istypevariant :: Name -> Q Bool
istypevariant nm = do
typevariants' <- typevariants
return $ elem nm typevariants'
tofixed :: Name -> Q Typex
tofixed nm = do
typevariants' <- typevariants
return $ FixedTx (fromJust $ elemIndex nm typevariants')
applySpecial :: Int -> Typex -> Q (Int,Typex)
applySpecial n (FuncTx f) = f (SpecialTx n) >>= applySpecial (n+1)
applySpecial n tx@(VarTx _) = return (n,tx)
applySpecial n tx@(BasicTx _) = return (n,tx)
applySpecial n tx@(FixedTx _) = return (n,tx)
applySpecial n tx@(SpecialTx _) = return (n,tx)
applySpecial n tx@NotTx = return (n,tx)
applySpecial n tx@(DataTx _ _ _) = return (n,tx)
applySpecial n tx@(SeenDataTx _ _) = return (n,tx)
applySpecial n tx@(TupleTx _) = return (n,tx)
applySpecial n tx@(ArrowTx _ _) = return (n,tx)
applySpecial n tx@(ListTx _) = return (n,tx)
applyFixed :: Int -> Typex -> Q (Int,Typex)
applyFixed n (FuncTx f) = f (FixedTx n) >>= applyFixed (n+1)
applyFixed n tx@(VarTx _) = return (n,tx)
applyFixed n tx@(BasicTx _) = return (n,tx)
applyFixed n tx@(FixedTx _) = return (n,tx)
applyFixed n tx@(SpecialTx _) = return (n,tx)
applyFixed n tx@NotTx = return (n,tx)
applyFixed n tx@(DataTx _ _ _) = return (n,tx)
applyFixed n tx@(SeenDataTx _ _) = return (n,tx)
applyFixed n tx@(TupleTx _) = return (n,tx)
applyFixed n tx@(ArrowTx _ _) = return (n,tx)
applyFixed n tx@(ListTx _) = return (n,tx)
applyFixed' :: Int -> Int -> Typex -> TypexQ
applyFixed' k n tx@(FuncTx f)
| k==n = return tx
| otherwise = f (FixedTx n) >>= applyFixed' k (n+1)
applyFixed' _ _ _ = fail "applyFixed' : Thorn doesn't work well, sorry."
gendec1 :: (a -> ExpQ) -> (a -> TypeQ) -> String -> a -> DecsQ
gendec1 f g s a = do
e <- f a
t <- g a
return [SigD (mkName s) t, ValD (mkNameP s) (NormalB e) []]
gendec2 :: (a -> b -> ExpQ) -> (a -> b -> TypeQ) -> String -> a -> b -> DecsQ
gendec2 f g s a b = do
e <- f a b
t <- g a b
return [SigD (mkName s) t, ValD (mkNameP s) (NormalB e) []]
modifyname :: (String,String) -> (String,String) -> String -> String
modifyname (pre,suf) (preinfix,sufinfix) s
| isAlpha (head s) = pre ++ s ++ suf
| head s == ':' = ":" ++ preinfix ++ tail s ++ sufinfix
| otherwise = preinfix ++ s ++ sufinfix
fixname :: (String -> String) -> Name -> Name
fixname f nm
| head s == '(' = mkName (f (init (tail s)))
| otherwise = mkName (f s)
where s = nameBase nm