module ToySolver.BoundsInference
( BoundsEnv
, inferBounds
, LA.computeInterval
) where
import Control.Monad
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import Data.VectorSpace
import Data.Interval
import ToySolver.Data.ArithRel
import ToySolver.Data.LA (BoundsEnv)
import qualified ToySolver.Data.LA as LA
import ToySolver.Data.Var
import ToySolver.Internal.Util (isInteger)
type C r = (RelOp, LA.Expr r)
inferBounds :: forall r. (RealFrac r)
=> LA.BoundsEnv r
-> [LA.Atom r]
-> VarSet
-> Int
-> LA.BoundsEnv r
inferBounds bounds constraints ivs limit = loop 0 bounds
where
cs :: VarMap [C r]
cs = IM.fromListWith (++) $ do
Rel lhs op rhs <- constraints
let m = LA.coeffMap (lhs ^-^ rhs)
(v,c) <- IM.toList m
guard $ v /= LA.unitVar
let op' = if c < 0 then flipOp op else op
rhs' = (1/c) *^ LA.fromCoeffMap (IM.delete v m)
return (v, [(op', rhs')])
loop :: Int -> LA.BoundsEnv r -> LA.BoundsEnv r
loop !i b = if (limit>=0 && i>=limit) || b==b' then b else loop (i+1) b'
where
b' = refine b
refine :: LA.BoundsEnv r -> LA.BoundsEnv r
refine b = IM.mapWithKey (\v i -> tighten v $ f b (IM.findWithDefault [] v cs) i) b
tighten :: Var -> Interval r -> Interval r
tighten v x =
if v `IS.notMember` ivs
then x
else tightenToInteger x
f :: (Real r, Fractional r) => LA.BoundsEnv r -> [C r] -> Interval r -> Interval r
f b cs i = foldr intersection i $ do
(op, rhs) <- cs
let i' = LA.computeInterval b rhs
lb = lowerBound' i'
ub = upperBound' i'
case op of
Eql -> return i'
Le -> return $ interval (NegInf, False) ub
Ge -> return $ interval lb (PosInf, False)
Lt -> return $ interval (NegInf, False) (strict ub)
Gt -> return $ interval (strict ub) (PosInf, False)
NEq -> []
strict :: (EndPoint r, Bool) -> (EndPoint r, Bool)
strict (x, _) = (x, False)
tightenToInteger :: forall r. (RealFrac r) => Interval r -> Interval r
tightenToInteger ival = interval lb2 ub2
where
lb@(x1, in1) = lowerBound' ival
ub@(x2, in2) = upperBound' ival
lb2 =
case x1 of
Finite x ->
( if isInteger x && not in1
then Finite (x + 1)
else Finite (fromInteger (ceiling x))
, True
)
_ -> lb
ub2 =
case x2 of
Finite x ->
( if isInteger x && not in2
then Finite (x 1)
else Finite (fromInteger (floor x))
, True
)
_ -> ub