module ToySolver.Data.AlgebraicNumber.Real
(
AReal
, realRoots
, realRootsEx
, minimalPolynomial
, isolatingInterval
, isRational
, isAlgebraicInteger
, height
, rootIndex
, nthRoot
, refineIsolatingInterval
, approx
, approxInterval
, simpARealPoly
, goldenRatio
) where
import Control.Exception (assert)
import Control.Monad
import Data.List
import Data.Ratio
import qualified Data.Set as Set
import qualified Text.PrettyPrint.HughesPJClass as PP
import Text.PrettyPrint.HughesPJClass (Doc, PrettyLevel, Pretty (..), prettyParen)
import Data.Interval (Interval, EndPoint (..), (<=..<), (<..<=), (<..<), (<!), (>!))
import qualified Data.Interval as Interval
import ToySolver.Data.Polynomial (Polynomial, UPolynomial, X (..))
import qualified ToySolver.Data.Polynomial as P
import ToySolver.Data.AlgebraicNumber.Root
import qualified ToySolver.Data.AlgebraicNumber.Sturm as Sturm
data AReal = RealRoot (UPolynomial Rational) (Interval Rational)
deriving Show
realRoots :: UPolynomial Rational -> [AReal]
realRoots p = Set.toAscList $ Set.fromList $ do
(q,_) <- P.factor p
realRoots' q
realRootsEx :: UPolynomial AReal -> [AReal]
realRootsEx p
| and [isRational c | (c,_) <- P.terms p] = realRoots $ P.mapCoeff toRational p
| otherwise = [a | a <- realRoots (simpARealPoly p), a `P.isRootOf` p]
realRoots' :: UPolynomial Rational -> [AReal]
realRoots' p = do
guard $ P.deg p > 0
i <- Sturm.separate p
return $ realRoot' p i
realRoot :: UPolynomial Rational -> Interval Rational -> AReal
realRoot p i =
case [q | (q,_) <- P.factor p, P.deg q > 0, Sturm.numRoots q i == 1] of
p2:_ -> realRoot' p2 i
[] -> error "ToySolver.Data.AlgebraicNumber.Real.realRoot: invalid interval"
realRoot' :: UPolynomial Rational -> Interval Rational -> AReal
realRoot' p i = RealRoot (normalizePoly p) i
isZero :: AReal -> Bool
isZero a = 0 `Interval.member` isolatingInterval a && 0 `P.isRootOf` minimalPolynomial a
scaleAReal :: Rational -> AReal -> AReal
scaleAReal r a = realRoot' p2 i2
where
p2 = rootScale r (minimalPolynomial a)
i2 = Interval.singleton r * isolatingInterval a
shiftAReal :: Rational -> AReal -> AReal
shiftAReal r a = realRoot' p2 i2
where
p2 = rootShift r (minimalPolynomial a)
i2 = Interval.singleton r + isolatingInterval a
instance Eq AReal where
a == b = p1==p2 && Sturm.numRoots' c (Interval.intersection i1 i2) == 1
where
p1 = minimalPolynomial a
p2 = minimalPolynomial b
i1 = isolatingInterval a
i2 = isolatingInterval b
c = sturmChain a
instance Ord AReal where
compare a b
| i1 >! i2 = GT
| i1 <! i2 = LT
| a == b = EQ
| otherwise = go i1 i2
where
i1 = isolatingInterval a
i2 = isolatingInterval b
c1 = sturmChain a
c2 = sturmChain b
go i1 i2
| i1 >! i2 = GT
| i1 <! i2 = LT
| otherwise =
if Interval.width i1 > Interval.width i2
then go (Sturm.halve' c1 i1) i2
else go i1 (Sturm.halve' c2 i2)
instance Num AReal where
a + b
| isRational a = shiftAReal (toRational a) b
| isRational b = shiftAReal (toRational b) a
| otherwise = realRoot p3 i3
where
p3 = rootAdd (minimalPolynomial a) (minimalPolynomial b)
c1 = sturmChain a
c2 = sturmChain b
c3 = Sturm.sturmChain p3
i3 = go (isolatingInterval a) (isolatingInterval b) (Sturm.separate' c3)
go i1 i2 is3 =
case [i5 | i3 <- is3, let i5 = Interval.intersection i3 i4, Sturm.numRoots' c3 i5 > 0] of
[] -> error "AReal.+: should not happen"
[i5] -> i5
is5 -> go (Sturm.halve' c1 i1) (Sturm.halve' c2 i2) [Sturm.halve' c3 i5 | i5 <- is5]
where
i4 = i1 + i2
a * b
| isRational a = scaleAReal (toRational a) b
| isRational b = scaleAReal (toRational b) a
| otherwise = realRoot p3 i3
where
p3 = rootMul (minimalPolynomial a) (minimalPolynomial b)
c1 = sturmChain a
c2 = sturmChain b
c3 = Sturm.sturmChain p3
i3 = go (isolatingInterval a) (isolatingInterval b) (Sturm.separate' c3)
go i1 i2 is3 =
case [i5 | i3 <- is3, let i5 = Interval.intersection i3 i4, Sturm.numRoots' c3 i5 > 0] of
[] -> error "AReal.*: should not happen"
[i5] -> i5
is5 -> go (Sturm.halve' c1 i1) (Sturm.halve' c2 i2) [Sturm.halve' c3 i5 | i5 <- is5]
where
i4 = i1 * i2
negate a = scaleAReal (1) a
abs a =
case compare 0 a of
EQ -> fromInteger 0
LT -> a
GT -> negate a
signum a = fromInteger $
case compare 0 a of
EQ -> 0
LT -> 1
GT -> 1
fromInteger = fromRational . toRational
instance Fractional AReal where
fromRational r = realRoot' (x P.constant r) (Interval.singleton r)
where
x = P.var X
recip a
| isZero a = error "AReal.recip: zero division"
| otherwise = realRoot' p2 i2
where
p2 = rootRecip (minimalPolynomial a)
c1 = sturmChain a
c2 = Sturm.sturmChain p2
i2 = go (isolatingInterval a) (Sturm.separate' c2)
go i1 is2 =
case [i2 | i2 <- is2, Interval.member 1 (i1 * i2)] of
[] -> error "AReal.recip: should not happen"
[i2] -> i2
is2' -> go (Sturm.halve' c1 i1) [Sturm.halve' c2 i2 | i2 <- is2']
instance Real AReal where
toRational x
| isRational x =
let p = minimalPolynomial x
a = P.coeff (P.var X) p
b = P.coeff P.mone p
in b / a
| otherwise = error "AReal.toRational: proper algebraic number"
instance RealFrac AReal where
properFraction = properFraction'
truncate = truncate'
round = round'
ceiling = ceiling'
floor = floor'
approx
:: AReal
-> Rational
-> Rational
approx a epsilon =
if isRational a
then toRational a
else Sturm.approx' (sturmChain a) (isolatingInterval a) epsilon
approxInterval
:: AReal
-> Rational
-> Interval Rational
approxInterval a epsilon =
if isRational a
then Interval.singleton (toRational a)
else Sturm.narrow' (sturmChain a) (isolatingInterval a) epsilon
properFraction' :: Integral b => AReal -> (b, AReal)
properFraction' x =
case compare x 0 of
EQ -> (0, 0)
GT -> (fromInteger floor_x, x fromInteger floor_x)
LT -> (fromInteger ceiling_x, x fromInteger ceiling_x)
where
floor_x = floor' x
ceiling_x = ceiling' x
truncate' :: Integral b => AReal -> b
truncate' = fst . properFraction'
round' :: Integral b => AReal -> b
round' x =
case signum (abs r 0.5) of
1 -> n
0 -> if even n then n else m
1 -> m
_ -> error "round default defn: Bad value"
where
(n,r) = properFraction' x
m = if r < 0 then n 1 else n + 1
ceiling' :: Integral b => AReal -> b
ceiling' a =
if Sturm.numRoots' chain (Interval.intersection i2 i3) >= 1
then fromInteger ceiling_lb
else fromInteger ceiling_ub
where
chain = sturmChain a
i2 = Sturm.narrow' chain (isolatingInterval a) (1/2)
(Finite lb, inLB) = Interval.lowerBound' i2
(Finite ub, inUB) = Interval.upperBound' i2
ceiling_lb = ceiling lb
ceiling_ub = ceiling ub
i3 = NegInf <..<= Finite (fromInteger ceiling_lb)
floor' :: Integral b => AReal -> b
floor' a =
if Sturm.numRoots' chain (Interval.intersection i2 i3) >= 1
then fromInteger floor_ub
else fromInteger floor_lb
where
chain = sturmChain a
i2 = Sturm.narrow' chain (isolatingInterval a) (1/2)
(Finite lb, inLB) = Interval.lowerBound' i2
(Finite ub, inUB) = Interval.upperBound' i2
floor_lb = floor lb
floor_ub = floor ub
i3 = Finite (fromInteger floor_ub) <=..< PosInf
nthRoot :: Integer -> AReal -> AReal
nthRoot n a
| n <= 0 = error "ToySolver.Data.AlgebraicNumver.Root.nthRoot"
| even n =
if a < 0
then error "ToySolver.Data.AlgebraicNumver.Root.nthRoot: no real roots"
else assert (length bs == 2) (maximum bs)
| otherwise =
assert (length bs == 1) (head bs)
where
bs = nthRoots n a
nthRoots :: Integer -> AReal -> [AReal]
nthRoots n _ | n <= 0 = []
nthRoots n a | even n && a < 0 = []
nthRoots n a = filter check (realRoots p2)
where
p1 = minimalPolynomial a
p2 = rootNthRoot n p1
c1 = sturmChain a
ok0 = isolatingInterval a
ng0 = map isolatingInterval $ delete a $ realRoots p1
check :: AReal -> Bool
check b = loop ok0 ng0 (isolatingInterval b)
where
c2 = sturmChain b
loop ok ng i
| Sturm.numRoots' c1 ok' == 0 = False
| null ng' = True
| otherwise =
loop (Sturm.halve' c1 ok')
(map (\i3 -> Sturm.halve' c1 i3) ng')
(Sturm.halve' c2 i)
where
i2 = i ^ n
ok' = Interval.intersection i2 ok
ng' = filter (\i3 -> Sturm.numRoots' c1 i3 /= 0) $
map (Interval.intersection i2) ng
refineIsolatingInterval :: AReal -> AReal
refineIsolatingInterval a@(RealRoot p i) =
if Interval.width i <= 0
then a
else RealRoot p (Sturm.halve p i)
minimalPolynomial :: AReal -> UPolynomial Rational
minimalPolynomial (RealRoot p _) = p
sturmChain :: AReal -> Sturm.SturmChain
sturmChain a = Sturm.sturmChain (minimalPolynomial a)
isolatingInterval :: AReal -> Interval Rational
isolatingInterval (RealRoot _ i) = i
instance P.Degree AReal where
deg a = P.deg $ minimalPolynomial a
isRational :: AReal -> Bool
isRational x = P.deg x == 1
isAlgebraicInteger :: AReal -> Bool
isAlgebraicInteger x = abs (P.lc P.nat (P.pp (minimalPolynomial x))) == 1
height :: AReal -> Integer
height x = maximum [abs (numerator c) | (c,_) <- P.terms $ P.pp $ minimalPolynomial x]
rootIndex :: AReal -> Int
rootIndex a = idx
where
as = realRoots' (minimalPolynomial a)
Just idx = elemIndex a as
instance Pretty AReal where
pPrintPrec lv prec r =
prettyParen (prec > appPrec) $
PP.hsep [PP.text "RealRoot", pPrintPrec lv (appPrec+1) p, PP.int (rootIndex r)]
where
p = minimalPolynomial r
appPrec = 10
instance P.PrettyCoeff AReal where
pPrintCoeff = pPrintPrec
isNegativeCoeff = (0>)
simpARealPoly :: UPolynomial AReal -> UPolynomial Rational
simpARealPoly p = rootSimpPoly minimalPolynomial p
goldenRatio :: AReal
goldenRatio = (1 + root5) / 2
where
[_, root5] = sort $ realRoots' ((P.var X)^2 5)