module ToySolver.Data.Polynomial.Factorization.Kronecker
( factor
) where
import Data.List
import Data.MultiSet (MultiSet)
import qualified Data.MultiSet as MultiSet
import Data.Numbers.Primes (primes)
import Data.Ratio
import ToySolver.Data.Polynomial.Base (Polynomial, UPolynomial, X (..))
import qualified ToySolver.Data.Polynomial.Base as P
import qualified ToySolver.Data.Polynomial.Interpolation.Lagrange as Interpolation
import ToySolver.Internal.Util (isInteger)
factor :: UPolynomial Integer -> [(UPolynomial Integer, Integer)]
factor 0 = [(0,1)]
factor 1 = []
factor p | P.deg p == 0 = [(p,1)]
factor p = [(P.constant c, 1) | c /= 1] ++ [(q, fromIntegral m) | (q,m) <- MultiSet.toOccurList qs]
where
(c,qs) = normalize (P.cont p, factor' (P.pp p))
normalize :: (Integer, MultiSet (UPolynomial Integer)) -> (Integer, MultiSet (UPolynomial Integer))
normalize (c,ps) = go (MultiSet.toOccurList ps) c MultiSet.empty
where
go [] !c !qs = (c, qs)
go ((p,m) : ps) !c !qs
| P.deg p == 0 = go ps (c * (P.coeff (P.var X) p) ^ m) qs
| P.lc P.nat p < 0 = go ps (c * (1)^m) (MultiSet.insertMany (p) m qs)
| otherwise = go ps c (MultiSet.insertMany p m qs)
factor' :: UPolynomial Integer -> MultiSet (UPolynomial Integer)
factor' p = go (MultiSet.singleton p) MultiSet.empty
where
go ps ret
| MultiSet.null ps = ret
| otherwise =
case factor2 p of
Nothing ->
go ps' (MultiSet.insertMany p m ret)
Just (q1,q2) ->
go (MultiSet.insertMany q1 m $ MultiSet.insertMany q2 m ps') ret
where
p = MultiSet.findMin ps
m = MultiSet.occur p ps
ps' = MultiSet.deleteAll p ps
factor2 :: UPolynomial Integer -> Maybe (UPolynomial Integer, UPolynomial Integer)
factor2 p | p == P.var X = Nothing
factor2 p =
case find (\(_,yi) -> yi==0) vs of
Just (xi,_) ->
let q1 = x P.constant xi
q2 = p' `P.div` P.mapCoeff fromInteger q1
in Just (q1, toZ q2)
Nothing ->
let qs = map Interpolation.interpolate $
sequence [[(fromInteger xi, fromInteger z) | z <- factors yi] | (xi,yi) <- vs]
zs = [ (q1,q2)
| q1 <- qs, P.deg q1 > 0, isUPolyZ q1
, let (q2,r) = p' `P.divMod` q1
, r == 0, P.deg q2 > 0, isUPolyZ q2
]
in case zs of
[] -> Nothing
(q1,q2):_ -> Just (toZ q1, toZ q2)
where
n = P.deg p `div` 2
xs = take (fromIntegral n + 1) xvalues
vs = [(x, P.eval (\X -> x) p) | x <- xs]
x = P.var X
p' :: UPolynomial Rational
p' = P.mapCoeff fromInteger p
isUPolyZ :: UPolynomial Rational -> Bool
isUPolyZ p = and [isInteger c | (c,_) <- P.terms p]
toZ :: Ord v => Polynomial Rational v -> Polynomial Integer v
toZ = P.mapCoeff numerator . P.pp
xvalues :: [Integer]
xvalues = 0 : interleave [1,2..] [1,2..]
interleave :: [a] -> [a] -> [a]
interleave xs [] = xs
interleave [] ys = ys
interleave (x:xs) ys = x : interleave ys xs
factors :: Integer -> [Integer]
factors 0 = []
factors x = xs ++ map negate xs
where
ps = primeFactors (abs x)
xs = map product $ sequence [take (n+1) (iterate (p*) 1) | (p,n) <- MultiSet.toOccurList ps]
primeFactors :: Integer -> MultiSet Integer
primeFactors 0 = MultiSet.empty
primeFactors n = go n primes MultiSet.empty
where
go :: Integer -> [Integer] -> MultiSet Integer -> MultiSet Integer
go 1 !_ !result = result
go n (p:ps) !result
| p*p > n = MultiSet.insert n result
| otherwise =
case f p n of
(m,n') -> go n' ps (MultiSet.insertMany p m result)
f :: Integer -> Integer -> (Int, Integer)
f p = go2 0
where
go2 !m !n
| n `mod` p == 0 = go2 (m+1) (n `div` p)
| otherwise = (m, n)