module ToySolver.FOLModelFinder
(
Var
, FSym
, PSym
, GenLit (..)
, Term (..)
, Atom (..)
, Lit
, Clause
, Formula
, GenFormula (..)
, toSkolemNF
, Model (..)
, Entity
, showModel
, showEntity
, findModel
) where
import Control.Monad
import Control.Monad.State
import Data.Array.IArray
import Data.IORef
import Data.List
import Data.Maybe
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set
import Text.Printf
import qualified ToySolver.SAT as SAT
type Var = String
type FSym = String
type PSym = String
class Vars a where
vars :: a -> Set Var
instance Vars a => Vars [a] where
vars = Set.unions . map vars
data GenLit a
= Pos a
| Neg a
deriving (Show, Eq, Ord)
instance Vars a => Vars (GenLit a) where
vars (Pos a) = vars a
vars (Neg a) = vars a
data Term
= TmApp FSym [Term]
| TmVar Var
deriving (Show, Eq, Ord)
data Atom = PApp PSym [Term]
deriving (Show, Eq, Ord)
type Lit = GenLit Atom
type Clause = [Lit]
instance Vars Term where
vars (TmVar v) = Set.singleton v
vars (TmApp _ ts) = vars ts
instance Vars Atom where
vars (PApp _ ts) = vars ts
type Formula = GenFormula Atom
data GenFormula a
= T
| F
| Atom a
| And (GenFormula a) (GenFormula a)
| Or (GenFormula a) (GenFormula a)
| Not (GenFormula a)
| Imply (GenFormula a) (GenFormula a)
| Equiv (GenFormula a) (GenFormula a)
| Forall Var (GenFormula a)
| Exists Var (GenFormula a)
deriving (Show, Eq, Ord)
instance Vars a => Vars (GenFormula a) where
vars T = Set.empty
vars F = Set.empty
vars (Atom a) = vars a
vars (And phi psi) = vars phi `Set.union` vars psi
vars (Or phi psi) = vars phi `Set.union` vars psi
vars (Not phi) = vars phi
vars (Imply phi psi) = vars phi `Set.union` vars psi
vars (Equiv phi psi) = vars phi `Set.union` vars psi
vars (Forall v phi) = Set.delete v (vars phi)
vars (Exists v phi) = Set.delete v (vars phi)
toNNF :: Formula -> Formula
toNNF = f
where
f (And phi psi) = f phi `And` f psi
f (Or phi psi) = f phi `Or` f psi
f (Not phi) = g phi
f (Imply phi psi) = g phi `Or` f psi
f (Equiv phi psi) = f (And (Imply phi psi) (Imply psi phi))
f (Forall v phi) = Forall v (f phi)
f (Exists v phi) = Exists v (f phi)
f phi = phi
g :: Formula -> Formula
g T = F
g F = T
g (And phi psi) = g phi `Or` g psi
g (Or phi psi) = g phi `And` g psi
g (Not phi) = f phi
g (Imply phi psi) = f phi `And` g psi
g (Equiv phi psi) = g (And (Imply phi psi) (Imply psi phi))
g (Forall v phi) = Exists v (g phi)
g (Exists v phi) = Forall v (g phi)
g (Atom a) = Not (Atom a)
toSkolemNF :: forall m. Monad m => (String -> Int -> m FSym) -> Formula -> m [Clause]
toSkolemNF skolem phi = f [] Map.empty (toNNF phi)
where
f :: [Var] -> Map Var Term -> Formula -> m [Clause]
f _ _ T = return []
f _ _ F = return [[]]
f _ s (Atom a) = return [[Pos (substAtom s a)]]
f _ s (Not (Atom a)) = return [[Neg (substAtom s a)]]
f uvs s (And phi psi) = do
phi' <- f uvs s phi
psi' <- f uvs s psi
return $ phi' ++ psi'
f uvs s (Or phi psi) = do
phi' <- f uvs s phi
psi' <- f uvs s psi
return $ [c1++c2 | c1 <- phi', c2 <- psi']
f uvs s psi@(Forall v phi) = do
let v' = gensym v (vars psi `Set.union` Set.fromList uvs)
f (v' : uvs) (Map.insert v (TmVar v') s) phi
f uvs s (Exists v phi) = do
fsym <- skolem v (length uvs)
f uvs (Map.insert v (TmApp fsym [TmVar v | v <- reverse uvs]) s) phi
f _ _ _ = error "ToySolver.FOLModelFinder.toSkolemNF: should not happen"
gensym :: String -> Set Var -> Var
gensym template vs = head [name | name <- names, Set.notMember name vs]
where
names = template : [template ++ show n | n <-[1..]]
substAtom :: Map Var Term -> Atom -> Atom
substAtom s (PApp p ts) = PApp p (map (substTerm s) ts)
substTerm :: Map Var Term -> Term -> Term
substTerm s (TmVar v) = fromMaybe (TmVar v) (Map.lookup v s)
substTerm s (TmApp f ts) = TmApp f (map (substTerm s) ts)
test_toSkolemNF = do
ref <- newIORef 0
let skolem name _ = do
n <- readIORef ref
let fsym = name ++ "#" ++ show n
writeIORef ref (n+1)
return fsym
let phi = Forall "x" $
Imply
(Atom (PApp "animal" [TmVar "x"]))
(Exists "y" $
And (Atom (PApp "heart" [TmVar "y"]))
(Atom (PApp "has" [TmVar "x", TmVar "y"])))
phi' <- toSkolemNF skolem phi
print phi'
data SGenTerm v
= STmApp FSym [v]
| STmVar v
deriving (Show, Eq, Ord)
data SGenAtom v
= SPApp PSym [v]
| SEq (SGenTerm v) v
deriving (Show, Eq, Ord)
type STerm = SGenTerm Var
type SAtom = SGenAtom Var
type SLit = GenLit SAtom
type SClause = [SLit]
instance Vars STerm where
vars (STmApp _ xs) = Set.fromList xs
vars (STmVar v) = Set.singleton v
instance Vars SAtom where
vars (SPApp _ xs) = Set.fromList xs
vars (SEq t v) = Set.insert v (vars t)
type M = State (Set Var, Int, [SLit])
flatten :: Clause -> SClause
flatten c =
case runState (mapM flattenLit c) (vars c, 0, []) of
(c, (_,_,ls)) -> removeNegEq $ ls ++ c
where
gensym :: M Var
gensym = do
(vs, n, ls) <- get
let go m = do
let v = "#" ++ show m
if v `Set.member` vs
then go (m+1)
else do
put (Set.insert v vs, m+1, ls)
return v
go n
flattenLit :: Lit -> M SLit
flattenLit (Pos a) = liftM Pos $ flattenAtom a
flattenLit (Neg a) = liftM Neg $ flattenAtom a
flattenAtom :: Atom -> M SAtom
flattenAtom (PApp "=" [TmVar x, TmVar y]) = return $ SEq (STmVar x) y
flattenAtom (PApp "=" [TmVar x, TmApp f ts]) = do
xs <- mapM flattenTerm ts
return $ SEq (STmApp f xs) x
flattenAtom (PApp "=" [TmApp f ts, TmVar x]) = do
xs <- mapM flattenTerm ts
return $ SEq (STmApp f xs) x
flattenAtom (PApp "=" [TmApp f ts, t2]) = do
xs <- mapM flattenTerm ts
x <- flattenTerm t2
return $ SEq (STmApp f xs) x
flattenAtom (PApp p ts) = do
xs <- mapM flattenTerm ts
return $ SPApp p xs
flattenTerm :: Term -> M Var
flattenTerm (TmVar x) = return x
flattenTerm (TmApp f ts) = do
xs <- mapM flattenTerm ts
x <- gensym
(vs, n, ls) <- get
put (vs, n, Neg (SEq (STmApp f xs) x) : ls)
return x
removeNegEq :: SClause -> SClause
removeNegEq = go []
where
go r [] = r
go r (Neg (SEq (STmVar x) y) : ls) = go (map (substLit x y) r) (map (substLit x y) ls)
go r (l : ls) = go (l : r) ls
substLit :: Var -> Var -> SLit -> SLit
substLit x y (Pos a) = Pos $ substAtom x y a
substLit x y (Neg a) = Neg $ substAtom x y a
substAtom :: Var -> Var -> SAtom -> SAtom
substAtom x y (SPApp p xs) = SPApp p (map (substVar x y) xs)
substAtom x y (SEq t v) = SEq (substTerm x y t) (substVar x y v)
substTerm :: Var -> Var -> STerm -> STerm
substTerm x y (STmApp f xs) = STmApp f (map (substVar x y) xs)
substTerm x y (STmVar v) = STmVar (substVar x y v)
substVar :: Var -> Var -> Var -> Var
substVar x y v
| v==x = y
| otherwise = v
test_flatten = flatten [Pos $ PApp "P" [TmApp "a" [], TmApp "f" [TmVar "x"]]]
type Entity = Int
showEntity :: Entity -> String
showEntity e = "$" ++ show e
showEntityTuple :: [Entity] -> String
showEntityTuple xs = printf "(%s)" $ intercalate ", " $ map showEntity xs
type GroundTerm = SGenTerm Entity
type GroundAtom = SGenAtom Entity
type GroundLit = GenLit GroundAtom
type GroundClause = [GroundLit]
type Subst = Map Var Entity
enumSubst :: Set Var -> [Entity] -> [Subst]
enumSubst vs univ = do
ps <- sequence [[(v,e) | e <- univ] | v <- Set.toList vs]
return $ Map.fromList ps
applySubst :: Subst -> SClause -> GroundClause
applySubst s = map substLit
where
substLit :: SLit -> GroundLit
substLit (Pos a) = Pos $ substAtom a
substLit (Neg a) = Neg $ substAtom a
substAtom :: SAtom -> GroundAtom
substAtom (SPApp p xs) = SPApp p (map substVar xs)
substAtom (SEq t v) = SEq (substTerm t) (substVar v)
substTerm :: STerm -> GroundTerm
substTerm (STmApp f xs) = STmApp f (map substVar xs)
substTerm (STmVar v) = STmVar (substVar v)
substVar :: Var -> Entity
substVar = (s Map.!)
simplifyGroundClause :: GroundClause -> Maybe GroundClause
simplifyGroundClause = liftM concat . mapM f
where
f :: GroundLit -> Maybe [GroundLit]
f (Pos (SEq (STmVar x) y)) = if x==y then Nothing else return []
f lit = return [lit]
collectFSym :: SClause -> Set (FSym, Int)
collectFSym = Set.unions . map f
where
f :: SLit -> Set (FSym, Int)
f (Pos a) = g a
f (Neg a) = g a
g :: SAtom -> Set (FSym, Int)
g (SEq (STmApp f xs) _) = Set.singleton (f, length xs)
g _ = Set.empty
collectPSym :: SClause -> Set (PSym, Int)
collectPSym = Set.unions . map f
where
f :: SLit -> Set (PSym, Int)
f (Pos a) = g a
f (Neg a) = g a
g :: SAtom -> Set (PSym, Int)
g (SPApp p xs) = Set.singleton (p, length xs)
g _ = Set.empty
data Model
= Model
{ mUniverse :: [Entity]
, mRelations :: Map PSym [[Entity]]
, mFunctions :: Map FSym [([Entity], Entity)]
}
showModel :: Model -> [String]
showModel m =
printf "DOMAIN = {%s}" (intercalate ", " (map showEntity (mUniverse m))) :
[ printf "%s = { %s }" p s
| (p, xss) <- Map.toList (mRelations m)
, let s = intercalate ", " [if length xs == 1 then showEntity (head xs) else showEntityTuple xs | xs <- xss]
] ++
[ printf "%s%s = %s" f (if length xs == 0 then "" else showEntityTuple xs) (showEntity y)
| (f, xss) <- Map.toList (mFunctions m)
, (xs, y) <- xss
]
findModel :: Int -> [Clause] -> IO (Maybe Model)
findModel size cs = do
let univ = [0..size1]
let cs2 = map flatten cs
fs = Set.unions $ map collectFSym cs2
ps = Set.unions $ map collectPSym cs2
solver <- SAT.newSolver
ref <- newIORef Map.empty
let translateAtom :: GroundAtom -> IO SAT.Var
translateAtom (SEq (STmVar _) _) = error "should not happen"
translateAtom a = do
m <- readIORef ref
case Map.lookup a m of
Just b -> return b
Nothing -> do
b <- SAT.newVar solver
writeIORef ref (Map.insert a b m)
return b
translateLit :: GroundLit -> IO SAT.Lit
translateLit (Pos a) = translateAtom a
translateLit (Neg a) = liftM negate $ translateAtom a
translateClause :: GroundClause -> IO SAT.Clause
translateClause = mapM translateLit
forM_ cs2 $ \c -> do
forM_ (enumSubst (vars c) univ) $ \s -> do
case simplifyGroundClause (applySubst s c) of
Nothing -> return ()
Just c' -> SAT.addClause solver =<< translateClause c'
forM_ (Set.toList fs) $ \(f, arity) -> do
forM_ (replicateM arity univ) $ \args ->
forM_ [(y1,y2) | y1 <- univ, y2 <- univ, y1 < y2] $ \(y1,y2) -> do
let c = [Neg (SEq (STmApp f args) y1), Neg (SEq (STmApp f args) y2)]
c' <- translateClause c
SAT.addClause solver c'
forM_ (Set.toList fs) $ \(f, arity) -> do
forM_ (replicateM arity univ) $ \args -> do
let c = [Pos (SEq (STmApp f args) y) | y <- univ]
c' <- translateClause c
SAT.addClause solver c'
ret <- SAT.solve solver
if ret
then do
bmodel <- SAT.model solver
m <- readIORef ref
let rels = Map.fromList $ do
(p,_) <- Set.toList ps
let tbl = sort [xs | (SPApp p' xs, b) <- Map.toList m, p == p', bmodel ! b]
return (p, tbl)
let funs = Map.fromList $ do
(f,_) <- Set.toList fs
let tbl = sort [(xs, y) | (SEq (STmApp f' xs) y, b) <- Map.toList m, f == f', bmodel ! b]
return (f, tbl)
let model = Model
{ mUniverse = univ
, mRelations = rels
, mFunctions = funs
}
return (Just model)
else do
return Nothing
test = do
let c1 = [Pos $ PApp "=" [TmApp "f" [TmApp "g" [TmVar "x"]], TmVar "x"]]
c2 = [Neg $ PApp "=" [TmVar "x", TmApp "g" [TmVar "x"]]]
ret <- findModel 3 [c1, c2]
case ret of
Nothing -> putStrLn "=== NO MODEL FOUND ==="
Just m -> do
putStrLn "=== A MODEL FOUND ==="
mapM_ putStrLn $ showModel m
test2 = do
let phi = Forall "x" $ Exists "y" $
And (Not (Atom (PApp "=" [TmVar "x", TmVar "y"])))
(Atom (PApp "=" [TmApp "f" [TmVar "y"], TmVar "x"]))
ref <- newIORef 0
let skolem name _ = do
n <- readIORef ref
let fsym = name ++ "#" ++ show n
writeIORef ref (n+1)
return fsym
cs <- toSkolemNF skolem phi
ret <- findModel 3 cs
case ret of
Nothing -> putStrLn "=== NO MODEL FOUND ==="
Just m -> do
putStrLn "=== A MODEL FOUND ==="
mapM_ putStrLn $ showModel m