module ToySolver.FourierMotzkin.Core
( ExprZ
, Rat
, toRat
, fromRat
, Lit (..)
, leR, ltR, geR, gtR
, simplify
, fromLAAtom
, toLAAtom
, constraintsToDNF
, BoundsR
, collectBounds
, boundsToLits
, evalBounds
, project
, project'
, projectN
, projectN'
, solve
, solve'
) where
import Control.Monad
import Data.List
import Data.Maybe
import Data.Ratio
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import Data.VectorSpace hiding (project)
import qualified Data.Interval as Interval
import Data.Interval (Interval, EndPoint (..), (<=..<), (<..<=), (<..<))
import ToySolver.Data.ArithRel
import ToySolver.Data.Boolean
import ToySolver.Data.DNF
import qualified ToySolver.Data.LA as LA
import ToySolver.Data.Var
type ExprZ = LA.Expr Integer
normalizeExprR :: ExprZ -> ExprZ
normalizeExprR e = LA.mapCoeff (`div` d) e
where d = abs $ gcd' $ map fst $ LA.terms e
type Rat = (ExprZ, Integer)
toRat :: LA.Expr Rational -> Rat
toRat e = seq m $ (LA.mapCoeff f e, m)
where
f x = numerator (fromInteger m * x)
m = foldl' lcm 1 [denominator c | (c,_) <- LA.terms e]
fromRat :: Rat -> LA.Expr Rational
fromRat (e,c) = LA.mapCoeff (% c) e
evalRat :: Model Rational -> Rat -> Rational
evalRat model (e, d) = LA.lift1 1 (model IM.!) (LA.mapCoeff fromIntegral e) / (fromIntegral d)
data Lit = Nonneg ExprZ | Pos ExprZ deriving (Show, Eq, Ord)
instance Variables Lit where
vars (Pos t) = vars t
vars (Nonneg t) = vars t
instance Complement Lit where
notB (Pos t) = Nonneg (negateV t)
notB (Nonneg t) = Pos (negateV t)
leR, ltR, geR, gtR :: Rat -> Rat -> Lit
leR (e1,c) (e2,d) = Nonneg $ normalizeExprR $ c *^ e2 ^-^ d *^ e1
ltR (e1,c) (e2,d) = Pos $ normalizeExprR $ c *^ e2 ^-^ d *^ e1
geR = flip leR
gtR = flip gtR
simplify :: [Lit] -> Maybe [Lit]
simplify = fmap concat . mapM f
where
f :: Lit -> Maybe [Lit]
f lit@(Pos e) =
case LA.asConst e of
Just x -> guard (x > 0) >> return []
Nothing -> return [lit]
f lit@(Nonneg e) =
case LA.asConst e of
Just x -> guard (x >= 0) >> return []
Nothing -> return [lit]
fromLAAtom :: LA.Atom Rational -> DNF Lit
fromLAAtom (Rel a op b) = atomR' op (toRat a) (toRat b)
toLAAtom :: Lit -> LA.Atom Rational
toLAAtom (Nonneg e) = LA.mapCoeff fromInteger e .>=. LA.constant 0
toLAAtom (Pos e) = LA.mapCoeff fromInteger e .>. LA.constant 0
constraintsToDNF :: [LA.Atom Rational] -> DNF Lit
constraintsToDNF = andB . map fromLAAtom
atomR' :: RelOp -> Rat -> Rat -> DNF Lit
atomR' op a b =
case op of
Le -> DNF [[a `leR` b]]
Lt -> DNF [[a `ltR` b]]
Ge -> DNF [[a `geR` b]]
Gt -> DNF [[a `gtR` b]]
Eql -> DNF [[a `leR` b, a `geR` b]]
NEq -> DNF [[a `ltR` b], [a `gtR` b]]
type BoundsR = ([Rat], [Rat], [Rat], [Rat])
project :: Var -> [LA.Atom Rational] -> [([LA.Atom Rational], Model Rational -> Model Rational)]
project v xs = do
ys <- unDNF $ constraintsToDNF xs
(zs, mt) <- maybeToList $ project' v ys
return (map toLAAtom zs, mt)
project' :: Var -> [Lit] -> Maybe ([Lit], Model Rational -> Model Rational)
project' v xs = do
case collectBounds v xs of
(bnd, rest) -> do
cond <- boundsToLits bnd
let mt m =
case Interval.pickup (evalBounds m bnd) of
Nothing -> error "ToySolver.FourierMotzkin.project': should not happen"
Just val -> IM.insert v val m
return (rest ++ cond, mt)
projectN :: VarSet -> [LA.Atom Rational] -> [([LA.Atom Rational], Model Rational -> Model Rational)]
projectN vs xs = do
ys <- unDNF $ constraintsToDNF xs
(zs, mt) <- maybeToList $ projectN' vs ys
return (map toLAAtom zs, mt)
projectN' :: VarSet -> [Lit] -> Maybe ([Lit], Model Rational -> Model Rational)
projectN' vs2 xs2 = do
(zs, mt) <- f (IS.toList vs2) xs2
return (zs, mt)
where
f [] xs = return (xs, id)
f (v:vs) xs = do
(ys, mt1) <- project' v xs
(zs, mt2) <- f vs ys
return (zs, mt1 . mt2)
collectBounds :: Var -> [Lit] -> (BoundsR, [Lit])
collectBounds v = foldr phi (([],[],[],[]),[])
where
phi :: Lit -> (BoundsR, [Lit]) -> (BoundsR, [Lit])
phi lit@(Nonneg t) x = f False lit t x
phi lit@(Pos t) x = f True lit t x
f :: Bool -> Lit -> ExprZ -> (BoundsR, [Lit]) -> (BoundsR, [Lit])
f strict lit t (bnd@(ls1,ls2,us1,us2), xs) =
case LA.extract v t of
(c,t') ->
case c `compare` 0 of
EQ -> (bnd, lit : xs)
GT ->
if strict
then ((ls1, (negateV t', c) : ls2, us1, us2), xs)
else (((negateV t', c) : ls1, ls2, us1, us2), xs)
LT ->
if strict
then ((ls1, ls2, us1, (t', negate c) : us2), xs)
else ((ls1, ls2, (t', negate c) : us1, us2), xs)
boundsToLits :: BoundsR -> Maybe [Lit]
boundsToLits (ls1, ls2, us1, us2) = simplify $
[ x `leR` y | x <- ls1, y <- us1 ] ++
[ x `ltR` y | x <- ls1, y <- us2 ] ++
[ x `ltR` y | x <- ls2, y <- us1 ] ++
[ x `ltR` y | x <- ls2, y <- us2 ]
solve :: VarSet -> [LA.Atom Rational] -> Maybe (Model Rational)
solve vs cs = msum [solve' vs cs2 | cs2 <- unDNF (constraintsToDNF cs)]
solve' :: VarSet -> [Lit] -> Maybe (Model Rational)
solve' vs cs = do
(ys,mt) <- projectN' vs =<< simplify cs
guard $ Just [] == simplify ys
return $ mt IM.empty
evalBounds :: Model Rational -> BoundsR -> Interval Rational
evalBounds model (ls1,ls2,us1,us2) =
Interval.intersections $
[ Finite (evalRat model x) <=..< PosInf | x <- ls1 ] ++
[ Finite (evalRat model x) <..< PosInf | x <- ls2 ] ++
[ NegInf <..<= Finite (evalRat model x) | x <- us1 ] ++
[ NegInf <..< Finite (evalRat model x) | x <- us2 ]
gcd' :: [Integer] -> Integer
gcd' [] = 1
gcd' xs = foldl1' gcd xs