module ToySolver.LPSolverHL
( OptResult (..)
, minimize
, maximize
, optimize
, solve
) where
import Control.Monad.State
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import Data.OptDir
import Data.VectorSpace
import ToySolver.Data.ArithRel
import qualified ToySolver.Data.LA as LA
import ToySolver.Data.Var
import qualified ToySolver.Simplex as Simplex
import qualified ToySolver.LPSolver as LPSolver
import ToySolver.LPSolver hiding (OptResult (..))
data OptResult r = OptUnsat | Unbounded | Optimum r (Model r)
deriving (Show, Eq, Ord)
maximize :: (RealFrac r) => LA.Expr r -> [LA.Atom r] -> OptResult r
maximize = optimize OptMax
minimize :: (RealFrac r) => LA.Expr r -> [LA.Atom r] -> OptResult r
minimize = optimize OptMin
solve :: (RealFrac r) => [LA.Atom r] -> Maybe (Model r)
solve cs =
flip evalState (emptySolver vs) $ do
tableau cs
ret <- phaseI
if not ret
then return Nothing
else do
m <- getModel vs
return (Just m)
where
vs = vars cs
optimize :: (RealFrac r) => OptDir -> LA.Expr r -> [LA.Atom r] -> OptResult r
optimize optdir obj cs =
flip evalState (emptySolver vs) $ do
tableau cs
ret <- LPSolver.twoPhaseSimplex optdir obj
case ret of
LPSolver.Unsat -> return OptUnsat
LPSolver.Unbounded -> return Unbounded
LPSolver.Optimum -> do
m <- getModel vs
tbl <- getTableau
return $ Optimum (Simplex.currentObjValue tbl) m
where
vs = vars cs `IS.union` vars obj
example_3_2 :: (LA.Expr Rational, [LA.Atom Rational])
example_3_2 = (obj, cond)
where
x1 = LA.var 1
x2 = LA.var 2
x3 = LA.var 3
obj = 3*^x1 ^+^ 2*^x2 ^+^ 3*^x3
cond = [ 2*^x1 ^+^ x2 ^+^ x3 .<=. LA.constant 2
, x1 ^+^ 2*^x2 ^+^ 3*^x3 .<=. LA.constant 5
, 2*^x1 ^+^ 2*^x2 ^+^ x3 .<=. LA.constant 6
, x1 .>=. LA.constant 0
, x2 .>=. LA.constant 0
, x3 .>=. LA.constant 0
]
test_3_2 :: Bool
test_3_2 =
uncurry maximize example_3_2 ==
Optimum (27/5) (IM.fromList [(1,1/5),(2,0),(3,8/5)])
example_3_5 :: (LA.Expr Rational, [LA.Atom Rational])
example_3_5 = (obj, cond)
where
x1 = LA.var 1
x2 = LA.var 2
x3 = LA.var 3
x4 = LA.var 4
x5 = LA.var 5
obj = (2)*^x1 ^+^ 4*^x2 ^+^ 7*^x3 ^+^ x4 ^+^ 5*^x5
cond = [ (1)*^x1 ^+^ x2 ^+^ 2*^x3 ^+^ x4 ^+^ 2*^x5 .==. LA.constant 7
, (1)*^x1 ^+^ 2*^x2 ^+^ 3*^x3 ^+^ x4 ^+^ x5 .==. LA.constant 6
, (1)*^x1 ^+^ x2 ^+^ x3 ^+^ 2*^x4 ^+^ x5 .==. LA.constant 4
, x2 .>=. LA.constant 0
, x3 .>=. LA.constant 0
, x4 .>=. LA.constant 0
, x5 .>=. LA.constant 0
]
test_3_5 :: Bool
test_3_5 =
uncurry minimize example_3_5 ==
Optimum 19 (IM.fromList [(1,1),(2,0),(3,1),(4,0),(5,2)])
example_4_1 :: (LA.Expr Rational, [LA.Atom Rational])
example_4_1 = (obj, cond)
where
x1 = LA.var 1
x2 = LA.var 2
obj = 2*^x1 ^+^ x2
cond = [ (1)*^x1 ^+^ x2 .>=. LA.constant 2
, x1 ^+^ x2 .<=. LA.constant 1
, x1 .>=. LA.constant 0
, x2 .>=. LA.constant 0
]
test_4_1 :: Bool
test_4_1 =
uncurry maximize example_4_1 ==
OptUnsat
example_4_2 :: (LA.Expr Rational, [LA.Atom Rational])
example_4_2 = (obj, cond)
where
x1 = LA.var 1
x2 = LA.var 2
obj = 2*^x1 ^+^ x2
cond = [ (1)*^x1 ^-^ x2 .<=. LA.constant 10
, 2*^x1 ^-^ x2 .<=. LA.constant 40
, x1 .>=. LA.constant 0
, x2 .>=. LA.constant 0
]
test_4_2 :: Bool
test_4_2 =
uncurry maximize example_4_2 ==
Unbounded
example_4_3 :: (LA.Expr Rational, [LA.Atom Rational])
example_4_3 = (obj, cond)
where
x1 = LA.var 1
x2 = LA.var 2
obj = 6*^x1 ^-^ 2*^x2
cond = [ 2*^x1 ^-^ x2 .<=. LA.constant 2
, x1 .<=. LA.constant 4
, x1 .>=. LA.constant 0
, x2 .>=. LA.constant 0
]
test_4_3 :: Bool
test_4_3 =
uncurry maximize example_4_3 ==
Optimum 12 (IM.fromList [(1,4),(2,6)])
example_4_5 :: (LA.Expr Rational, [LA.Atom Rational])
example_4_5 = (obj, cond)
where
x1 = LA.var 1
x2 = LA.var 2
obj = 2*^x1 ^+^ x2
cond = [ 4*^x1 ^+^ 3*^x2 .<=. LA.constant 12
, 4*^x1 ^+^ x2 .<=. LA.constant 8
, 4*^x1 ^-^ x2 .<=. LA.constant 8
, x1 .>=. LA.constant 0
, x2 .>=. LA.constant 0
]
test_4_5 :: Bool
test_4_5 =
uncurry maximize example_4_5 ==
Optimum 5 (IM.fromList [(1,3/2),(2,2)])
example_4_6 :: (LA.Expr Rational, [LA.Atom Rational])
example_4_6 = (obj, cond)
where
x1 = LA.var 1
x2 = LA.var 2
x3 = LA.var 3
x4 = LA.var 4
obj = 20*^x1 ^+^ (1/2)*^x2 ^-^ 6*^x3 ^+^ (3/4)*^x4
cond = [ x1 .<=. LA.constant 2
, 8*^x1 ^-^ x2 ^+^ 9*^x3 ^+^ (1/4)*^x4 .<=. LA.constant 16
, 12*^x1 ^-^ (1/2)*^x2 ^+^ 3*^x3 ^+^ (1/2)*^x4 .<=. LA.constant 24
, x2 .<=. LA.constant 1
, x1 .>=. LA.constant 0
, x2 .>=. LA.constant 0
, x3 .>=. LA.constant 0
, x4 .>=. LA.constant 0
]
test_4_6 :: Bool
test_4_6 =
uncurry maximize example_4_6 ==
Optimum (165/4) (IM.fromList [(1,2),(2,1),(3,0),(4,1)])
example_4_7 :: (LA.Expr Rational, [LA.Atom Rational])
example_4_7 = (obj, cond)
where
x1 = LA.var 1
x2 = LA.var 2
x3 = LA.var 3
x4 = LA.var 4
obj = x1 ^+^ 1.5*^x2 ^+^ 5*^x3 ^+^ 2*^x4
cond = [ 3*^x1 ^+^ 2*^x2 ^+^ x3 ^+^ 4*^x4 .<=. LA.constant 6
, 2*^x1 ^+^ x2 ^+^ 5*^x3 ^+^ x4 .<=. LA.constant 4
, 2*^x1 ^+^ 6*^x2 ^-^ 4*^x3 ^+^ 8*^x4 .==. LA.constant 0
, x1 ^+^ 3*^x2 ^-^ 2*^x3 ^+^ 4*^x4 .==. LA.constant 0
, x1 .>=. LA.constant 0
, x2 .>=. LA.constant 0
, x3 .>=. LA.constant 0
, x4 .>=. LA.constant 0
]
test_4_7 :: Bool
test_4_7 =
uncurry maximize example_4_7 ==
Optimum (48/11) (IM.fromList [(1,0),(2,0),(3,81),(4,41)])
kuhn_7_3 :: (LA.Expr Rational, [LA.Atom Rational])
kuhn_7_3 = (obj, cond)
where
[x1,x2,x3,x4,x5,x6,x7] = map LA.var [1..7]
obj = (2)*^x4 ^+^ (3)*^x5 ^+^ x6 ^+^ 12*^x7
cond = [ x1 ^-^ 2*^x4 ^-^ 9*^x5 ^+^ x6 ^+^ 9*^x7 .==. LA.constant 0
, x2 ^+^ (1/3)*^x4 ^+^ x5 ^-^ (1/3)*^x6 ^-^ 2*^x7 .==. LA.constant 0
, x3 ^+^ 2*^x4 ^+^ 3*^x5 ^-^ x6 ^-^ 12*^x7 .==. LA.constant 2
, x1 .>=. LA.constant 0
, x2 .>=. LA.constant 0
, x3 .>=. LA.constant 0
, x4 .>=. LA.constant 0
, x5 .>=. LA.constant 0
, x6 .>=. LA.constant 0
, x7 .>=. LA.constant 0
]
test_kuhn_7_3 :: Bool
test_kuhn_7_3 =
uncurry minimize kuhn_7_3 ==
Optimum (2) (IM.fromList [(1,2),(2,0),(3,0),(4,2),(5,0),(6,2),(7,0)])
testAll :: Bool
testAll = and
[ test_3_2
, test_3_5
, test_4_1
, test_4_2
, test_4_3
, test_4_5
, test_4_6
, test_4_7
, test_kuhn_7_3
]