module ToySolver.Data.LA
(
Expr
, var
, constant
, terms
, fromTerms
, coeffMap
, fromCoeffMap
, unitVar
, asConst
, coeff
, lookupCoeff
, extract
, extractMaybe
, mapCoeff
, mapCoeffWithVar
, evalExpr
, evalLinear
, lift1
, applySubst
, applySubst1
, showExpr
, Atom (..)
, showAtom
, evalAtom
, applySubstAtom
, applySubst1Atom
, solveFor
, module ToySolver.Data.ArithRel
, BoundsEnv
, computeInterval
) where
import Control.Monad
import Control.DeepSeq
import Data.List
import Data.Maybe
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import qualified Data.IntSet as IntSet
import Data.Interval
import Data.VectorSpace
import qualified ToySolver.Data.ArithRel as ArithRel
import ToySolver.Data.ArithRel
import ToySolver.Data.Var
newtype Expr r
= Expr
{
coeffMap :: IntMap r
} deriving (Eq, Ord)
fromCoeffMap :: (Num r, Eq r) => IntMap r -> Expr r
fromCoeffMap m = normalizeExpr (Expr m)
terms :: Expr r -> [(r,Var)]
terms (Expr m) = [(c,v) | (v,c) <- IntMap.toList m]
fromTerms :: (Num r, Eq r) => [(r,Var)] -> Expr r
fromTerms ts = fromCoeffMap $ IntMap.fromListWith (+) [(x,c) | (c,x) <- ts]
instance Variables (Expr r) where
vars (Expr m) = IntSet.delete unitVar (IntMap.keysSet m)
instance Show r => Show (Expr r) where
showsPrec d m = showParen (d > 10) $
showString "fromTerms " . shows (terms m)
instance (Num r, Eq r, Read r) => Read (Expr r) where
readsPrec p = readParen (p > 10) $ \ r -> do
("fromTerms",s) <- lex r
(xs,t) <- reads s
return (fromTerms xs, t)
instance NFData r => NFData (Expr r) where
rnf (Expr m) = rnf m
unitVar :: Var
unitVar = 1
asConst :: Num r => Expr r -> Maybe r
asConst (Expr m) =
case IntMap.toList m of
[] -> Just 0
[(v,x)] | v==unitVar -> Just x
_ -> Nothing
normalizeExpr :: (Num r, Eq r) => Expr r -> Expr r
normalizeExpr (Expr t) = Expr $ IntMap.filter (0/=) t
var :: Num r => Var -> Expr r
var v = Expr $ IntMap.singleton v 1
constant :: (Num r, Eq r) => r -> Expr r
constant c = normalizeExpr $ Expr $ IntMap.singleton unitVar c
mapCoeff :: (Num b, Eq b) => (a -> b) -> Expr a -> Expr b
mapCoeff f (Expr t) = Expr $ IntMap.mapMaybe g t
where
g c = if c' == 0 then Nothing else Just c'
where c' = f c
mapCoeffWithVar :: (Num b, Eq b) => (a -> Var -> b) -> Expr a -> Expr b
mapCoeffWithVar f (Expr t) = Expr $ IntMap.mapMaybeWithKey g t
where
g v c = if c' == 0 then Nothing else Just c'
where c' = f c v
instance (Num r, Eq r) => AdditiveGroup (Expr r) where
Expr t ^+^ e2 | IntMap.null t = e2
e1 ^+^ Expr t | IntMap.null t = e1
e1 ^+^ e2 = normalizeExpr $ plus e1 e2
zeroV = Expr $ IntMap.empty
negateV = ((1) *^)
instance (Num r, Eq r) => VectorSpace (Expr r) where
type Scalar (Expr r) = r
1 *^ e = e
0 *^ e = zeroV
c *^ e = mapCoeff (c*) e
plus :: Num r => Expr r -> Expr r -> Expr r
plus (Expr t1) (Expr t2) = Expr $ IntMap.unionWith (+) t1 t2
evalExpr :: Num r => Model r -> Expr r -> r
evalExpr m (Expr t) = sum [(m' IntMap.! v) * c | (v,c) <- IntMap.toList t]
where m' = IntMap.insert unitVar 1 m
evalLinear :: VectorSpace a => Model a -> a -> Expr (Scalar a) -> a
evalLinear m u (Expr t) = sumV [c *^ (m' IntMap.! v) | (v,c) <- IntMap.toList t]
where m' = IntMap.insert unitVar u m
lift1 :: VectorSpace x => x -> (Var -> x) -> Expr (Scalar x) -> x
lift1 unit f (Expr t) = sumV [c *^ (g v) | (v,c) <- IntMap.toList t]
where
g v
| v==unitVar = unit
| otherwise = f v
applySubst :: (Num r, Eq r) => VarMap (Expr r) -> Expr r -> Expr r
applySubst s (Expr m) = sumV (map f (IntMap.toList m))
where
f (v,c) = c *^ (
case IntMap.lookup v s of
Just tm -> tm
Nothing -> var v)
applySubst1 :: (Num r, Eq r) => Var -> Expr r -> Expr r -> Expr r
applySubst1 x e e1 =
case extractMaybe x e1 of
Nothing -> e1
Just (c,e2) -> c *^ e ^+^ e2
coeff :: Num r => Var -> Expr r -> r
coeff v (Expr m) = IntMap.findWithDefault 0 v m
lookupCoeff :: Num r => Var -> Expr r -> Maybe r
lookupCoeff v (Expr m) = IntMap.lookup v m
extract :: Num r => Var -> Expr r -> (r, Expr r)
extract v (Expr m) = (IntMap.findWithDefault 0 v m, Expr (IntMap.delete v m))
extractMaybe :: Num r => Var -> Expr r -> Maybe (r, Expr r)
extractMaybe v (Expr m) =
case IntMap.lookup v m of
Nothing -> Nothing
Just c -> Just (c, Expr (IntMap.delete v m))
showExpr :: (Num r, Eq r, Show r) => Expr r -> String
showExpr = showExprWith f
where
f x = "x" ++ show x
showExprWith :: (Num r, Show r, Eq r) => (Var -> String) -> Expr r -> String
showExprWith env (Expr m) = foldr (.) id xs ""
where
xs = intersperse (showString " + ") ts
ts = [if c==1
then showString (env x)
else showsPrec 8 c . showString "*" . showString (env x)
| (x,c) <- IntMap.toList m, x /= unitVar] ++
[showsPrec 7 c | c <- maybeToList (IntMap.lookup unitVar m)]
type Atom r = ArithRel (Expr r)
showAtom :: (Num r, Eq r, Show r) => Atom r -> String
showAtom (ArithRel lhs op rhs) = showExpr lhs ++ showOp op ++ showExpr rhs
evalAtom :: (Num r, Ord r) => Model r -> Atom r -> Bool
evalAtom m (ArithRel lhs op rhs) = evalOp op (evalExpr m lhs) (evalExpr m rhs)
applySubstAtom :: (Num r, Eq r) => VarMap (Expr r) -> Atom r -> Atom r
applySubstAtom s (ArithRel lhs op rhs) = ArithRel (applySubst s lhs) op (applySubst s rhs)
applySubst1Atom :: (Num r, Eq r) => Var -> Expr r -> Atom r -> Atom r
applySubst1Atom x e (ArithRel lhs op rhs) = ArithRel (applySubst1 x e lhs) op (applySubst1 x e rhs)
solveFor :: (Real r, Fractional r) => Atom r -> Var -> Maybe (RelOp, Expr r)
solveFor (ArithRel lhs op rhs) v = do
(c,e) <- extractMaybe v (lhs ^-^ rhs)
return ( if c < 0 then flipOp op else op
, (1/c) *^ negateV e
)
type BoundsEnv r = VarMap (Interval r)
computeInterval :: (Real r, Fractional r) => BoundsEnv r -> Expr r -> Interval r
computeInterval b = evalExpr b . mapCoeff singleton