module ToySolver.Data.Polynomial.Base
(
Polynomial
, Var (..)
, constant
, terms
, fromTerms
, coeffMap
, fromCoeffMap
, fromTerm
, Degree (..)
, Vars (..)
, lt
, lc
, lm
, coeff
, lookupCoeff
, isPrimitive
, Factor (..)
, SQFree (..)
, ContPP (..)
, deriv
, integral
, eval
, subst
, mapCoeff
, toMonic
, toUPolynomialOf
, divModMP
, reduce
, UPolynomial
, X (..)
, UTerm
, UMonomial
, div
, mod
, divMod
, divides
, gcd
, lcm
, exgcd
, pdivMod
, pdiv
, pmod
, gcd'
, isRootOf
, isSquareFree
, nat
, Term
, tdeg
, tscale
, tmult
, tdivides
, tdiv
, tderiv
, tintegral
, Monomial
, mone
, mfromIndices
, mfromIndicesMap
, mindices
, mindicesMap
, mmult
, mpow
, mdivides
, mdiv
, mderiv
, mintegral
, mlcm
, mgcd
, mcoprime
, MonomialOrder
, lex
, revlex
, grlex
, grevlex
, PrintOptions (..)
, defaultPrintOptions
, prettyPrint
, PrettyCoeff (..)
, PrettyVar (..)
) where
import Prelude hiding (lex, div, mod, divMod, gcd, lcm)
import qualified Prelude
import Control.DeepSeq
import Control.Exception (assert)
import Control.Monad
import Data.Default.Class
import Data.Data
import qualified Data.FiniteField as FF
import Data.Function
import Data.Hashable
import Data.List
import Data.Monoid
import Data.Ratio
import Data.String (IsString (..))
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import Data.Typeable
import Data.VectorSpace
import qualified Text.PrettyPrint.HughesPJClass as PP
import Text.PrettyPrint.HughesPJClass (Doc, PrettyLevel, Pretty (..), prettyParen)
infixl 7 `div`, `mod`
class Vars a v => Var a v | a -> v where
var :: v -> a
class Ord v => Vars a v | a -> v where
vars :: a -> Set v
class Degree t where
deg :: t -> Integer
newtype Polynomial r v = Polynomial{ coeffMap :: Map (Monomial v) r }
deriving (Eq, Ord, Typeable)
instance (Eq k, Num k, Ord v) => Num (Polynomial k v) where
(+) = plus
(*) = mult
negate = neg
abs x = x
signum _ = 1
fromInteger x = constant (fromInteger x)
instance (Eq k, Num k, Ord v, IsString v) => IsString (Polynomial k v) where
fromString s = var (fromString s)
instance (Eq k, Num k, Ord v) => AdditiveGroup (Polynomial k v) where
(^+^) = plus
zeroV = zero
negateV = neg
instance (Eq k, Num k, Ord v) => VectorSpace (Polynomial k v) where
type Scalar (Polynomial k v) = k
k *^ p = scale k p
instance (Show v, Ord v, Show k) => Show (Polynomial k v) where
showsPrec d p = showParen (d > 10) $
showString "fromTerms " . shows (terms p)
instance (NFData k, NFData v) => NFData (Polynomial k v) where
rnf (Polynomial m) = rnf m
instance (Hashable k, Hashable v) => Hashable (Polynomial k v) where
hashWithSalt = hashUsing (Map.toList . coeffMap)
instance (Eq k, Num k, Ord v) => Var (Polynomial k v) v where
var x = fromTerm (1, var x)
instance (Eq k, Num k, Ord v) => Vars (Polynomial k v) v where
vars p = Set.unions $ [vars mm | (_, mm) <- terms p]
instance Degree (Polynomial k v) where
deg p
| isZero p = 1
| otherwise = maximum [deg mm | (_,mm) <- terms p]
normalize :: (Eq k, Num k, Ord v) => Polynomial k v -> Polynomial k v
normalize (Polynomial m) = Polynomial (Map.filter (0/=) m)
asConstant :: Num k => Polynomial k v -> Maybe k
asConstant p =
case terms p of
[] -> Just 0
[(c,xs)] | Map.null (mindicesMap xs) -> Just c
_ -> Nothing
scale :: (Eq k, Num k, Ord v) => k -> Polynomial k v -> Polynomial k v
scale 0 _ = zero
scale 1 p = p
scale a (Polynomial m) = normalize $ Polynomial (Map.map (a*) m)
zero :: (Eq k, Num k, Ord v) => Polynomial k v
zero = Polynomial $ Map.empty
plus :: (Eq k, Num k, Ord v) => Polynomial k v -> Polynomial k v -> Polynomial k v
plus (Polynomial m1) (Polynomial m2) = normalize $ Polynomial $ Map.unionWith (+) m1 m2
neg :: (Eq k, Num k, Ord v) => Polynomial k v -> Polynomial k v
neg (Polynomial m) = Polynomial $ Map.map negate m
mult :: (Eq k, Num k, Ord v) => Polynomial k v -> Polynomial k v -> Polynomial k v
mult a b
| Just c <- asConstant a = scale c b
| Just c <- asConstant b = scale c a
mult (Polynomial m1) (Polynomial m2) = normalize $ Polynomial $ Map.fromListWith (+)
[ (xs1 `mmult` xs2, c1*c2)
| (xs1,c1) <- Map.toList m1, (xs2,c2) <- Map.toList m2
]
isZero :: Polynomial k v -> Bool
isZero (Polynomial m) = Map.null m
constant :: (Eq k, Num k, Ord v) => k -> Polynomial k v
constant c = fromTerm (c, mone)
fromTerms :: (Eq k, Num k, Ord v) => [Term k v] -> Polynomial k v
fromTerms = normalize . Polynomial . Map.fromListWith (+) . map (\(c,xs) -> (xs,c))
fromCoeffMap :: (Eq k, Num k, Ord v) => Map (Monomial v) k -> Polynomial k v
fromCoeffMap m = normalize $ Polynomial m
fromTerm :: (Eq k, Num k, Ord v) => Term k v -> Polynomial k v
fromTerm (c,xs) = normalize $ Polynomial $ Map.singleton xs c
terms :: Polynomial k v -> [Term k v]
terms (Polynomial m) = [(c,xs) | (xs,c) <- Map.toList m]
lt :: (Eq k, Num k, Ord v) => MonomialOrder v -> Polynomial k v -> Term k v
lt cmp p =
case terms p of
[] -> (0, mone)
ms -> maximumBy (cmp `on` snd) ms
lc :: (Eq k, Num k, Ord v) => MonomialOrder v -> Polynomial k v -> k
lc cmp = fst . lt cmp
lm :: (Eq k, Num k, Ord v) => MonomialOrder v -> Polynomial k v -> Monomial v
lm cmp = snd . lt cmp
coeff :: (Num k, Ord v) => Monomial v -> Polynomial k v -> k
coeff xs (Polynomial m) = Map.findWithDefault 0 xs m
lookupCoeff :: Ord v => Monomial v -> Polynomial k v -> Maybe k
lookupCoeff xs (Polynomial m) = Map.lookup xs m
contI :: (Integral r, Ord v) => Polynomial r v -> r
contI 0 = 1
contI p = foldl1' Prelude.gcd [abs c | (c,_) <- terms p]
ppI :: (Integral r, Ord v) => Polynomial r v -> Polynomial r v
ppI p = mapCoeff f p
where
c = contI p
f x = assert (x `Prelude.mod` c == 0) $ x `Prelude.div` c
class ContPP k where
cont :: (Ord v) => Polynomial k v -> k
pp :: (Ord v) => Polynomial k v -> Polynomial k v
instance ContPP Integer where
cont = contI
pp = ppI
instance Integral r => ContPP (Ratio r) where
cont 0 = 1
cont p = foldl1' Prelude.gcd ns % foldl' Prelude.lcm 1 ds
where
ns = [abs (numerator c) | (c,_) <- terms p]
ds = [denominator c | (c,_) <- terms p]
pp p = mapCoeff (/ c) p
where
c = cont p
isPrimitive :: (Eq k, Num k, ContPP k, Ord v) => Polynomial k v -> Bool
isPrimitive p = isZero p || cont p == 1
deriv :: (Eq k, Num k, Ord v) => Polynomial k v -> v -> Polynomial k v
deriv p x = sumV [fromTerm (tderiv m x) | m <- terms p]
integral :: (Eq k, Fractional k, Ord v) => Polynomial k v -> v -> Polynomial k v
integral p x = sumV [fromTerm (tintegral m x) | m <- terms p]
eval :: (Num k, Ord v) => (v -> k) -> Polynomial k v -> k
eval env p = sum [c * product [(env x) ^ e | (x,e) <- mindices xs] | (c,xs) <- terms p]
subst
:: (Eq k, Num k, Ord v1, Ord v2)
=> Polynomial k v1 -> (v1 -> Polynomial k v2) -> Polynomial k v2
subst p s =
sumV [constant c * product [(s x)^e | (x,e) <- mindices xs] | (c, xs) <- terms p]
mapCoeff :: (Eq k1, Num k1, Ord v) => (k -> k1) -> Polynomial k v -> Polynomial k1 v
mapCoeff f (Polynomial m) = Polynomial $ Map.mapMaybe g m
where
g x = if y == 0 then Nothing else Just y
where
y = f x
toMonic :: (Eq r, Fractional r, Ord v) => MonomialOrder v -> Polynomial r v -> Polynomial r v
toMonic cmp p
| c == 0 || c == 1 = p
| otherwise = mapCoeff (/c) p
where
c = lc cmp p
toUPolynomialOf :: (Ord k, Num k, Ord v) => Polynomial k v -> v -> UPolynomial (Polynomial k v)
toUPolynomialOf p v = fromTerms $ do
(c,mm) <- terms p
let m = mindicesMap mm
return ( fromTerms [(c, mfromIndicesMap (Map.delete v m))]
, var X `mpow` Map.findWithDefault 0 v m
)
divModMP
:: forall k v. (Eq k, Fractional k, Ord v)
=> MonomialOrder v -> Polynomial k v -> [Polynomial k v] -> ([Polynomial k v], Polynomial k v)
divModMP cmp p fs = go IntMap.empty (terms' p)
where
terms' :: Polynomial k v -> [Term k v]
terms' g = sortBy (flip cmp `on` snd) (terms g)
merge :: [Term k v] -> [Term k v] -> [Term k v]
merge [] ys = ys
merge xs [] = xs
merge xxs@(x:xs) yys@(y:ys) =
case cmp (snd x) (snd y) of
GT -> x : merge xs yys
LT -> y : merge xxs ys
EQ ->
case fst x + fst y of
0 -> merge xs ys
c -> (c, snd x) : merge xs ys
ls = zip [0..] [(lt cmp f, terms' f) | f <- fs]
go :: IntMap (Polynomial k v) -> [Term k v] -> ([Polynomial k v], Polynomial k v)
go qs g =
case xs of
[] -> ([IntMap.findWithDefault 0 i qs | i <- [0 .. length fs 1]], fromTerms g)
(i, b, g') : _ -> go (IntMap.insertWith (+) i b qs) g'
where
xs = do
(i,(a,f)) <- ls
h <- g
guard $ a `tdivides` h
let b = tdiv h a
return (i, fromTerm b, merge g [(tscale (1) b `tmult` m) | m <- f])
reduce
:: (Eq k, Fractional k, Ord v)
=> MonomialOrder v -> Polynomial k v -> [Polynomial k v] -> Polynomial k v
reduce cmp p fs = go p
where
ls = [(lt cmp f, f) | f <- fs]
go g = if null xs then g else go (head xs)
where
ms = sortBy (flip cmp `on` snd) (terms g)
xs = do
(a,f) <- ls
h <- ms
guard $ a `tdivides` h
return (g fromTerm (tdiv h a) * f)
class Factor a where
factor :: a -> [(a, Integer)]
class SQFree a where
sqfree :: a -> [(a, Integer)]
data PrintOptions k v
= PrintOptions
{ pOptPrintVar :: PrettyLevel -> Rational -> v -> Doc
, pOptPrintCoeff :: PrettyLevel -> Rational -> k -> Doc
, pOptIsNegativeCoeff :: k -> Bool
, pOptMonomialOrder :: MonomialOrder v
}
instance (PrettyCoeff k, PrettyVar v, Ord v) => Default (PrintOptions k v) where
def = defaultPrintOptions
defaultPrintOptions :: (PrettyCoeff k, PrettyVar v, Ord v) => PrintOptions k v
defaultPrintOptions
= PrintOptions
{ pOptPrintVar = pPrintVar
, pOptPrintCoeff = pPrintCoeff
, pOptIsNegativeCoeff = isNegativeCoeff
, pOptMonomialOrder = grlex
}
instance (Ord k, Num k, Ord v, PrettyCoeff k, PrettyVar v) => Pretty (Polynomial k v) where
pPrintPrec = prettyPrint def
prettyPrint
:: (Ord k, Num k, Ord v)
=> PrintOptions k v
-> PrettyLevel -> Rational -> Polynomial k v -> Doc
prettyPrint opt lv prec p =
case sortBy (flip (pOptMonomialOrder opt) `on` snd) $ terms p of
[] -> PP.int 0
[t] -> pLeadingTerm prec t
t:ts ->
prettyParen (prec > addPrec) $
PP.hcat (pLeadingTerm addPrec t : map pTrailingTerm ts)
where
pLeadingTerm prec (c,xs) =
if pOptIsNegativeCoeff opt c
then prettyParen (prec > addPrec) $
PP.char '-' <> prettyPrintTerm opt lv (addPrec+1) (c,xs)
else prettyPrintTerm opt lv prec (c,xs)
pTrailingTerm (c,xs) =
if pOptIsNegativeCoeff opt c
then PP.space <> PP.char '-' <> PP.space <> prettyPrintTerm opt lv (addPrec+1) (c,xs)
else PP.space <> PP.char '+' <> PP.space <> prettyPrintTerm opt lv (addPrec+1) (c,xs)
prettyPrintTerm
:: (Ord k, Num k, Ord v)
=> PrintOptions k v
-> PrettyLevel -> Rational -> Term k v -> Doc
prettyPrintTerm opt lv prec (c,xs)
| len == 0 = pOptPrintCoeff opt lv (appPrec+1) c
| len == 1 && c == 1 = pPow prec $ head (mindices xs)
| otherwise =
prettyParen (prec > mulPrec) $
PP.hcat $ intersperse (PP.char '*') fs
where
len = Map.size $ mindicesMap xs
fs = [pOptPrintCoeff opt lv (appPrec+1) c | c /= 1] ++ [pPow (mulPrec+1) p | p <- mindices xs]
pPow prec (x,1) = pOptPrintVar opt lv prec x
pPow prec (x,n) =
prettyParen (prec > expPrec) $
pOptPrintVar opt lv (expPrec+1) x <> PP.char '^' <> PP.integer n
class PrettyCoeff a where
pPrintCoeff :: PrettyLevel -> Rational -> a -> Doc
isNegativeCoeff :: a -> Bool
isNegativeCoeff _ = False
instance PrettyCoeff Integer where
pPrintCoeff = pPrintPrec
isNegativeCoeff = (0>)
instance (PrettyCoeff a, Integral a) => PrettyCoeff (Ratio a) where
pPrintCoeff lv p r
| denominator r == 1 = pPrintCoeff lv p (numerator r)
| otherwise =
prettyParen (p > ratPrec) $
pPrintCoeff lv (ratPrec+1) (numerator r) <>
PP.char '/' <>
pPrintCoeff lv (ratPrec+1) (denominator r)
isNegativeCoeff x = isNegativeCoeff (numerator x)
instance PrettyCoeff (FF.PrimeField a) where
pPrintCoeff lv p a = pPrintCoeff lv p (FF.toInteger a)
isNegativeCoeff _ = False
instance (Num c, Ord c, PrettyCoeff c, Ord v, PrettyVar v) => PrettyCoeff (Polynomial c v) where
pPrintCoeff = pPrintPrec
class PrettyVar a where
pPrintVar :: PrettyLevel -> Rational -> a -> Doc
instance PrettyVar Int where
pPrintVar _ _ n = PP.char 'x' <> PP.int n
instance PrettyVar X where
pPrintVar _ _ X = PP.char 'x'
addPrec, mulPrec, ratPrec, expPrec, appPrec :: Rational
addPrec = 6
mulPrec = 7
ratPrec = 7
expPrec = 8
appPrec = 10
type UPolynomial r = Polynomial r X
data X = X
deriving (Eq, Ord, Bounded, Enum, Show, Read, Typeable, Data)
instance NFData X
instance Hashable X where
hashWithSalt = hashUsing fromEnum
nat :: MonomialOrder X
nat = compare `on` deg
div :: (Eq k, Fractional k) => UPolynomial k -> UPolynomial k -> UPolynomial k
div f1 f2 = fst (divMod f1 f2)
mod :: (Eq k, Fractional k) => UPolynomial k -> UPolynomial k -> UPolynomial k
mod f1 f2 = snd (divMod f1 f2)
divMod :: (Eq k, Fractional k) => UPolynomial k -> UPolynomial k -> (UPolynomial k, UPolynomial k)
divMod f g
| isZero g = error "ToySolver.Data.Polynomial.divMod: division by zero"
| otherwise = go 0 f
where
lt_g = lt nat g
go !q !r
| deg r < deg g = (q,r)
| otherwise = go (q + t) (r t * g)
where
lt_r = lt nat r
t = fromTerm $ lt_r `tdiv` lt_g
divides :: (Eq k, Fractional k) => UPolynomial k -> UPolynomial k -> Bool
divides f1 f2 = f2 `mod` f1 == 0
gcd :: (Eq k, Fractional k) => UPolynomial k -> UPolynomial k -> UPolynomial k
gcd f1 0 = toMonic nat f1
gcd f1 f2 = gcd f2 (f1 `mod` f2)
lcm :: (Eq k, Fractional k) => UPolynomial k -> UPolynomial k -> UPolynomial k
lcm _ 0 = 0
lcm 0 _ = 0
lcm f1 f2 = toMonic nat $ (f1 `mod` (gcd f1 f2)) * f2
exgcd
:: (Eq k, Fractional k)
=> UPolynomial k
-> UPolynomial k
-> (UPolynomial k, UPolynomial k, UPolynomial k)
exgcd f1 f2 = f $ go f1 f2 1 0 0 1
where
go !r0 !r1 !s0 !s1 !t0 !t1
| r1 == 0 = (r0, s0, t0)
| otherwise = go r1 r2 s1 s2 t1 t2
where
(q, r2) = r0 `divMod` r1
s2 = s0 q*s1
t2 = t0 q*t1
f (g,u,v)
| lc_g == 0 = (g, u, v)
| otherwise = (mapCoeff (/lc_g) g, mapCoeff (/lc_g) u, mapCoeff (/lc_g) v)
where
lc_g = lc nat g
pdivMod :: (Eq r, Num r) => UPolynomial r -> UPolynomial r -> (r, UPolynomial r, UPolynomial r)
pdivMod _ 0 = error "ToySolver.Data.Polynomial.pdivMod: division by 0"
pdivMod f g
| deg f < deg g = (1, 0, f)
| otherwise = go (deg f deg g + 1) f 0
where
(lc_g, lm_g) = lt nat g
b = lc_g ^ (deg f deg_g + 1)
deg_g = deg g
go !n !f1 !q
| deg_g > deg f1 = (b, q, scale (lc_g ^ n) f1)
| otherwise = go (n 1) (scale lc_g f1 s * g) (q + scale (lc_g ^ (n1)) s)
where
(lc_f1, lm_f1) = lt nat f1
s = fromTerm (lc_f1, lm_f1 `mdiv` lm_g)
pdiv :: (Eq r, Num r) => UPolynomial r -> UPolynomial r -> UPolynomial r
pdiv f g =
case f `pdivMod` g of
(_, q, _) -> q
pmod :: (Eq r, Num r) => UPolynomial r -> UPolynomial r -> UPolynomial r
pmod _ 0 = error "ToySolver.Data.Polynomial.pmod: division by 0"
pmod f g
| deg f < deg g = f
| otherwise = go (deg f deg g + 1) f
where
(lc_g, lm_g) = lt nat g
deg_g = deg g
go !n !f1
| deg_g > deg f1 = scale (lc_g ^ n) f1
| otherwise = go (n 1) (scale lc_g f1 s * g)
where
(lc_f1, lm_f1) = lt nat f1
s = fromTerm (lc_f1, lm_f1 `mdiv` lm_g)
gcd' :: (Eq r, Integral r) => UPolynomial r -> UPolynomial r -> UPolynomial r
gcd' f1 0 = ppI f1
gcd' f1 f2 = gcd' f2 (f1 `pmod` f2)
isRootOf :: (Eq k, Num k) => k -> UPolynomial k -> Bool
isRootOf x p = eval (\_ -> x) p == 0
isSquareFree :: (Eq k, Fractional k) => UPolynomial k -> Bool
isSquareFree p = gcd p (deriv p X) == 1
type Term k v = (k, Monomial v)
type UTerm k = Term k X
tdeg :: Term k v -> Integer
tdeg (_,xs) = deg xs
tscale :: (Num k, Ord v) => k -> Term k v -> Term k v
tscale a (c, xs) = (a*c, xs)
tmult :: (Num k, Ord v) => Term k v -> Term k v -> Term k v
tmult (c1,xs1) (c2,xs2) = (c1*c2, xs1 `mmult` xs2)
tdivides :: (Fractional k, Ord v) => Term k v -> Term k v -> Bool
tdivides (_,xs1) (_,xs2) = xs1 `mdivides` xs2
tdiv :: (Fractional k, Ord v) => Term k v -> Term k v -> Term k v
tdiv (c1,xs1) (c2,xs2) = (c1 / c2, xs1 `mdiv` xs2)
tderiv :: (Eq k, Num k, Ord v) => Term k v -> v -> Term k v
tderiv (c,xs) x =
case mderiv xs x of
(s,ys) -> (c * fromIntegral s, ys)
tintegral :: (Eq k, Fractional k, Ord v) => Term k v -> v -> Term k v
tintegral (c,xs) x =
case mintegral xs x of
(s,ys) -> (c * fromRational s, ys)
newtype Monomial v = Monomial{ mindicesMap :: Map v Integer }
deriving (Eq, Ord, Typeable)
type UMonomial = Monomial X
instance (Ord v, Show v) => Show (Monomial v) where
showsPrec d m = showParen (d > 10) $
showString "mfromIndices " . shows (mindices m)
instance (Ord v, IsString v) => IsString (Monomial v) where
fromString s = var (fromString s)
instance (NFData v) => NFData (Monomial v) where
rnf (Monomial m) = rnf m
instance Degree (Monomial v) where
deg (Monomial m) = sum $ Map.elems m
instance Ord v => Var (Monomial v) v where
var x = Monomial $ Map.singleton x 1
instance Ord v => Vars (Monomial v) v where
vars mm = Map.keysSet (mindicesMap mm)
instance Hashable v => Hashable (Monomial v) where
hashWithSalt = hashUsing (Map.toList . mindicesMap)
mone :: Monomial v
mone = Monomial $ Map.empty
mfromIndices :: Ord v => [(v, Integer)] -> Monomial v
mfromIndices xs
| any (\(_,e) -> 0>e) xs = error "ToySolver.Data.Polynomial.mfromIndices: negative exponent"
| otherwise = Monomial $ Map.fromListWith (+) [(x,e) | (x,e) <- xs, e > 0]
mfromIndicesMap :: Ord v => Map v Integer -> Monomial v
mfromIndicesMap m
| any (\(_,e) -> 0>e) (Map.toList m) = error "ToySolver.Data.Polynomial.mfromIndicesMap: negative exponent"
| otherwise = mfromIndicesMap' m
mfromIndicesMap' :: Ord v => Map v Integer -> Monomial v
mfromIndicesMap' m = Monomial $ Map.filter (>0) m
mindices :: Ord v => Monomial v -> [(v, Integer)]
mindices = Map.toAscList . mindicesMap
mmult :: Ord v => Monomial v -> Monomial v -> Monomial v
mmult (Monomial xs1) (Monomial xs2) = mfromIndicesMap' $ Map.unionWith (+) xs1 xs2
mpow :: Ord v => Monomial v -> Integer -> Monomial v
mpow _ 0 = mone
mpow m 1 = m
mpow (Monomial xs) e
| 0 > e = error "ToySolver.Data.Polynomial.mpow: negative exponent"
| otherwise = Monomial $ Map.map (e*) xs
mdivides :: Ord v => Monomial v -> Monomial v -> Bool
mdivides (Monomial xs1) (Monomial xs2) = Map.isSubmapOfBy (<=) xs1 xs2
mdiv :: Ord v => Monomial v -> Monomial v -> Monomial v
mdiv (Monomial xs1) (Monomial xs2) = Monomial $ Map.differenceWith f xs1 xs2
where
f m n
| m <= n = Nothing
| otherwise = Just (m n)
mderiv :: Ord v => Monomial v -> v -> (Integer, Monomial v)
mderiv (Monomial xs) x
| n==0 = (0, mone)
| otherwise = (n, Monomial $ Map.update f x xs)
where
n = Map.findWithDefault 0 x xs
f m
| m <= 1 = Nothing
| otherwise = Just $! m 1
mintegral :: Ord v => Monomial v -> v -> (Rational, Monomial v)
mintegral (Monomial xs) x =
(1 % fromIntegral (n + 1), Monomial $ Map.insert x (n+1) xs)
where
n = Map.findWithDefault 0 x xs
mlcm :: Ord v => Monomial v -> Monomial v -> Monomial v
mlcm (Monomial m1) (Monomial m2) = Monomial $ Map.unionWith max m1 m2
mgcd :: Ord v => Monomial v -> Monomial v -> Monomial v
mgcd (Monomial m1) (Monomial m2) = Monomial $ Map.intersectionWith min m1 m2
mcoprime :: Ord v => Monomial v -> Monomial v -> Bool
mcoprime m1 m2 = mgcd m1 m2 == mone
type MonomialOrder v = Monomial v -> Monomial v -> Ordering
lex :: Ord v => MonomialOrder v
lex xs1 xs2 = go (mindices xs1) (mindices xs2)
where
go [] [] = EQ
go [] _ = LT
go _ [] = GT
go ((x1,n1):xs1) ((x2,n2):xs2) =
case compare x1 x2 of
LT -> GT
GT -> LT
EQ -> compare n1 n2 `mappend` go xs1 xs2
revlex :: Ord v => Monomial v -> Monomial v -> Ordering
revlex xs1 xs2 = go (Map.toDescList (mindicesMap xs1)) (Map.toDescList (mindicesMap xs2))
where
go [] [] = EQ
go [] _ = GT
go _ [] = LT
go ((x1,n1):xs1) ((x2,n2):xs2) =
case compare x1 x2 of
LT -> GT
GT -> LT
EQ -> cmp n1 n2 `mappend` go xs1 xs2
cmp n1 n2 = compare n2 n1
grlex :: Ord v => MonomialOrder v
grlex = (compare `on` deg) `mappend` lex
grevlex :: Ord v => MonomialOrder v
grevlex = (compare `on` deg) `mappend` revlex
#if !MIN_VERSION_hashable(1,2,0)
hashUsing :: (Hashable b) =>
(a -> b)
-> Int
-> a
-> Int
hashUsing f salt x = hashWithSalt salt (f x)
#endif