{-# LANGUAGE GADTs,TypeSynonymInstances,FlexibleInstances,Rank2Types #-} ----------------------------------------------------------------------------- -- | -- Module : Data.TASequence -- Copyright : (c) Atze van der Ploeg 2014 -- License : BSD-style -- Maintainer : atzeus@gmail.org -- Stability : provisional -- Portability : portable -- A type class for type aligned sequences: heterogeneous -- sequences where the types enforce the element order. -- -- Type aligned sequences are best explained by an example: a type -- aligned sequence of functions is a sequence f 1 , f 2 , f 3 ... f n such that -- the composition of these functions f 1 ◦ f 2 ◦ f 3 ◦ ... ◦ f n is well typed. -- In other words: the result type of each function in the sequence -- must be the same as the argument type of the next function (if any). -- In general, the elements of a type aligned sequence do not have to -- be functions, i.e. values of type a → b, but can be values of type -- (c a b), for some binary type constructor c. Hence, we define a type -- aligned sequence to be a sequence of elements of the type (c a_i b_i ) -- with the side-condition b_i−1 = a_i . If s is the type of a type aligned -- sequence data structure, then (s c a b) is the type of a type aligned -- sequence where the first element has type (c a x), for some x, and -- the last element has type (c y b), for some y. -- -- The simplest type aligned sequence data structure is a list, see "Data.TASequence.ConsList". The other modules -- give various other type aligned sequence data structures. The data structure "Data.TASequence.FastCatQueue" supports the most operations in worst case constant time. -- -- -- See the paper Reflection without Remorse: Revealing a hidden sequence to speed up Monadic Reflection, Atze van der Ploeg and Oleg Kiselyov, Haskell Symposium 2014 -- for more details. -- -- Paper: <http://homepages.cwi.nl/~ploeg/zseq.pdf> -- Talk : <http://www.youtube.com/watch?v=_XoI65Rxmss> ----------------------------------------------------------------------------- module Data.TASequence(TASequence(..), TAViewL(..), TAViewR(..)) where import Control.Category import Prelude hiding ((.),id) infixr 5 <| infixl 5 |> infix 5 >< {- | A type class for type aligned sequences Minimal complete defention: 'tempty' and 'tsingleton' and ('tviewl' or 'tviewr') and ('><' or '|>' or '<|') Instances should satisfy the following laws: Category laws: > tempty >< x == x > x >< tempty == x > (x >< y) >< z = x >< (y >< z) Observation laws: > tviewl (tsingleton e >< s) == e :< s > tviewl tempty == TAEmptyL The behaviour of '<|','|>', 'tmap' and 'tviewr' is implied by the above laws and their default definitions. -} class TASequence s where tempty :: s c x x tsingleton :: c x y -> s c x y -- | Append two type aligned sequences (><) :: s c x y -> s c y z -> s c x z -- | View a type aligned sequence from the left tviewl :: s c x y -> TAViewL s c x y -- | View a type aligned sequence from the right -- -- Default definition: -- -- > tviewr q = case tviewl q of -- > TAEmptyL -> TAEmptyR -- > h :< t -> case tviewr t of -- > TAEmptyR -> tempty :> h -- > p :> l -> (h <| p) :> l tviewr :: s c x y -> TAViewR s c x y -- | Append a single element to the right -- -- Default definition: -- -- > l |> r = l >< tsingleton r (|>) :: s c x y -> c y z -> s c x z -- | Append a single element to the left -- -- Default definition: -- -- > l <| r = tsingleton l >< r (<|) :: c x y -> s c y z -> s c x z -- | Apply a function to all elements in a type aligned sequence -- -- Default definition: -- -- > tmap f q = case tviewl q of -- > TAEmptyL -> tempty -- > h :< t -> f h <| tmap f t tmap :: (forall x y. c x y -> d x y) -> s c x y -> s d x y l |> r = l >< tsingleton r l <| r = tsingleton l >< r l >< r = case tviewl l of TAEmptyL -> r h :< t -> h <| (t >< r) tviewl q = case tviewr q of TAEmptyR -> TAEmptyL p :> l -> case tviewl p of TAEmptyL -> l :< tempty h :< t -> h :< (t |> l) tviewr q = case tviewl q of TAEmptyL -> TAEmptyR h :< t -> case tviewr t of TAEmptyR -> tempty :> h p :> l -> (h <| p) :> l tmap f q = case tviewl q of TAEmptyL -> tempty h :< t -> f h <| tmap f t data TAViewL s c x y where TAEmptyL :: TAViewL s c x x (:<) :: c x y -> s c y z -> TAViewL s c x z data TAViewR s c x y where TAEmptyR :: TAViewR s c x x (:>) :: s c x y -> c y z -> TAViewR s c x z instance TASequence s => Category (s c) where id = tempty (.) = flip (><)