Uncertain ========= [![uncertain on Hackage](https://img.shields.io/hackage/v/uncertain.svg?maxAge=2592000)](https://hackage.haskell.org/package/uncertain) [![uncertain on Stackage LTS](http://stackage.org/package/uncertain/badge/lts)](http://stackage.org/lts/package/uncertain) [![uncertain on Stackage Nightly](http://stackage.org/package/uncertain/badge/nightly)](http://stackage.org/nightly/package/uncertain) [![Build Status](https://travis-ci.org/mstksg/uncertain.svg?branch=master)](https://travis-ci.org/mstksg/uncertain) Provides tools to manipulate numbers with inherent experimental/measurement uncertainty, and propagates them through functions based on principles from statistics. ## Usage ```haskell import Numeric.Uncertain ``` ### Create numbers ```haskell 7.13 +/- 0.05 91800 +/- 100 12.5 `withVar` 0.36 exact 7.9512 81.42 `withPrecision` 4 7 :: Uncert Double 9.18 :: Uncert Double fromSamples [12.5, 12.7, 12.6, 12.6, 12.5] ``` Can be descontructed/analyzed with `:+/-` (pattern synonym/pseudo-constructor matching on the mean and standard deviation), `uMean`, `uStd`, `uVar`, etc. ### Manipulate with error propagation ```haskell ghci> let x = 1.52 +/- 0.07 ghci> let y = 781.4 +/- 0.3 ghci> let z = 1.53e-1 `withPrecision` 3 ghci> cosh x 2.4 +/- 0.2 ghci> exp x / z * sin (y ** z) 10.9 +/- 0.9 ghci> pi + 3 * logBase x y 52 +/- 5 ``` Propagates uncertainty using second-order multivariate Taylor expansions of functions, computed using the *[ad][]* library. [ad]: https://hackage.haskell.org/package/ad #### Arbitrary numeric functions ```haskell ghci> liftUF (\[x,y,z] -> x*y+z) [ 12.2 +/- 0.5 , 56 +/- 2 , 0.12 +/- 0.08 ] 680 +/- 40 ``` ## Correlated samples Can propagate uncertainty on complex functions take from potentially correlated samples. ```haskell ghci> import Numeric.Uncertain.Correlated ghci> evalCorr $ do x <- sampleUncert $ 12.5 +/- 0.8 y <- sampleUncert $ 15.9 +/- 0.5 z <- sampleUncert $ 1.52 +/- 0.07 let k = y ** x resolveUncert $ (x+z) * logBase z k 1200 +/- 200 ``` ### "Interactive" Exploratory Mode *Correlated* module functionality can be used in *ghci* or `IO` or `ST`, for "interactive" exploration. ```haskell ghci> x <- sampleUncert $ 12.5 +/- 0.8 ghci> y <- sampleUncert $ 15.9 +/- 0.5 ghci> z <- sampleUncert $ 1.52 +/- 0.07 ghci> let k = y**x ghci> resolveUncert $ (x+z) * logBase z k 1200 +/- 200 ``` ## Monte Carlo-based propagation of uncertainty Provides a module for propagating uncertainty using [Monte Carlo simulations][], which could potentially be more accurate if third-order and higher taylor series expansion terms are non-negligible. [Monte Carlo simulations]: https://en.wikipedia.org/wiki/Monte_Carlo_method ```haskell ghci> import qualified Numeric.Uncertain.MonteCarlo as MC ghci> import System.Random.MWC ghci> let x = 1.52 +/- 0.07 ghci> let y = 781.4 +/- 0.3 ghci> let z = 1.53e-1 `withPrecision` 3 ghci> g <- create ghci> cosh x 2.4 +/- 0.2 ghci> MC.liftU cosh x g 2.4 +/- 0.2 ghci> exp x / z * sin (y ** z) 10.9 +/- 0.9 ghci> MC.liftU3 (\a b c -> exp a / c * sin (b**c)) x y z g 10.8 +/- 1.0 ghci> pi + 3 * logBase x y 52 +/- 5 ghci> MC.liftU2 (\a b -> pi + 3 * logBase a b) x y g 51 +/- 5 ``` ## Comparisons Note that this is very different from other libraries with similar data types (like from [intervals][] and [rounding][]); these do not attempt to maintain intervals or simply digit precisions; they instead are intended to model actual experimental and measurement data with their uncertainties, and apply functions to the data with the uncertainties and properly propagating the errors with sound statistical principles. [intervals]: https://hackage.haskell.org/package/intervals [rounding]: https://hackage.haskell.org/package/rounding For a clear example, take ```haskell > (52 +/- 6) + (39 +/- 4) 91. +/- 7. ``` In a library like [intervals][], this would result in `91 +/- 10` (that is, a lower bound of 46 + 35 and an upper bound of 58 + 43). However, with experimental data, errors in two independent samples tend to "cancel out", and result in an overall aggregate uncertainty in the sum of approximately 7. ## Copyright Copyright (c) Justin Le 2016