module UU.Parsing.Machine where
import GHC.Prim
import UU.Util.BinaryTrees
import UU.Parsing.MachineInterface
pDynE v = anaDynE v
pDynL v = anaDynL v
newtype RealParser state s p a = P(forall r' r'' . (a -> r'' -> r') ->
(state -> Steps r'' s p) -> state -> Steps r' s p)
newtype RealRecogn state s p = R(forall r . (state -> Steps r s p) -> state -> Steps r s p)
newtype RealAccept state result s p a = A(forall r . (state -> Steps r s p) -> state -> Steps (result a r) s p)
newtype ParsRec state result s p a = PR ( RealParser state s p a
, RealRecogn state s p
, RealAccept state result s p a
)
mkPR (P p, R r) = PR (P p, R r, A (p acceptR))
unP (P p) = p
unR (R p) = p
parseRecbasic :: (inp -> Steps (out c d) sym pos)
-> ParsRec inp out sym pos a
-> inp
-> Steps (out a (out c d)) sym pos
parseRecbasic eof (PR ( P rp, rr, A ra)) inp = (ra eof inp)
parsebasic :: (inp -> Steps (out c d) sym pos)
-> AnaParser inp out sym pos a
-> inp
-> Steps (out a (out c d)) sym pos
parsebasic eof (pp) inp
= parseRecbasic eof (pars pp) inp
libAccept :: (OutputState a, InputState b s p) => ParsRec b a s p s
libAccept = mkPR (P (\ acc k state ->
case splitState state of
(# s, ss #) -> OkVal (acc s) (k ss))
,R (\ k state ->
case splitState state of
(# s, ss #) -> Ok (k ss))
)
libInsert c sym firsts =mkPR( P (\acc k state -> let msg = Msg firsts
(getPosition state)
(Insert sym)
in StRepair c msg (val (acc sym) (k (insertSymbol sym (reportError msg state)))))
, R (\ k state -> let msg = Msg firsts
(getPosition state)
(Insert sym)
in StRepair c msg (k (insertSymbol sym (reportError msg state))))
)
libSucceed v =mkPR( P (\ acc -> let accv = val (acc v) in \ k state -> accv (k state))
, R id
)
libSeq (PR (P pp, R pr, _)) ~(PR (P qp, R qr, A qa)) =mkPR ( P (\ acc -> let p = pp (nextR acc) in \k state -> p (qa k) state)
, R ( pr.qr)
)
libDollar f (PR (P qp, R qr, _ )) = mkPR ( P (\ acc -> qp (acc.f))
, R qr
)
libDollarL f (PR (P qp, R qr, _ )) = mkPR ( P (\ acc -> let accf = val (acc f) in \ k state -> qr (\ inp -> accf ( k inp)) state)
, R qr
)
libDollarR f (PR (P qp, R qr, _ )) = mkPR (P qp, R qr)
libSeqL (PR (P pp, R pr, _ )) ~(PR (P qp, R qr , _ )) = mkPR ( P (\acc -> let p = pp acc in \k state -> p (qr k) state)
, R (pr.qr)
)
libSeqR (PR (P pp, R pr, _ )) ~(PR (P qp, R qr, _ )) = mkPR ( P (\acc -> let q = qp acc in \k state -> pr (q k) state)
, R (pr.qr)
)
libOr (PR (P pp, R pr,_ )) (PR (P qp, R qr, _ )) = mkPR ( P (\ acc -> let p = pp acc
q = qp acc
in \ k state -> p k state `libBest` q k state)
, R (\ k state -> pr k state `libBest` qr k state)
)
libFail :: OutputState a => ParsRec b a c p d
libFail = mkPR ( P (\ _ _ _ -> (usererror "calling an always failing parser" ))
, R (\ _ _ -> (usererror "calling an always failing recogniser"))
)
starting :: Steps a s p -> Expecting s
starting (StRepair _ m _ ) = getStart m
starting (Best l _ _ ) = starting l
starting _ = systemerror "UU.Parsing.Machine" "starting"
hasSuccess :: Steps a s p -> Bool
hasSuccess (StRepair _ _ _ ) = False
hasSuccess (Best _ _ _ ) = False
hasSuccess _ = True
getStart (Msg st _ _) = st
addToMessage (Msg exp pos act) more = Msg (more `eor` exp) pos act
addexpecting more (StRepair cost msg rest) = StRepair cost (addToMessage msg more) rest
addexpecting more (Best l sel r) = Best (addexpecting more l)
(addexpecting more sel)
(addexpecting more r)
addexpecting more (OkVal v rest ) = systemerror "UU_Parsing" ("addexpecting: OkVal")
addexpecting more (Ok _ ) = systemerror "UU_Parsing" ("addexpecting: Ok")
addexpecting more (Cost _ _ ) = systemerror "UU_Parsing" ("addexpecting: Cost")
addexpecting more _ = systemerror "UU_Parsing" ("addexpecting: other")
eor :: Ord a => Expecting a -> Expecting a -> Expecting a
eor p q = EOr (merge (tolist p) (tolist q))
where merge x@(l:ll) y@(r:rr) = case compare l r of
LT -> l:( ll `merge` y)
GT -> r:( x `merge` rr)
EQ -> l:( ll `merge` rr)
merge l [] = l
merge [] r = r
tolist (EOr l) = l
tolist x = [x]
libBest :: Ord s => Steps b s p -> Steps b s p -> Steps b s p
libBest ls rs = libBest' ls rs id id
libBest' :: Ord s => Steps b s p -> Steps c s p -> (b -> d) -> (c -> d) -> Steps d s p
libBest' (OkVal v ls) (OkVal w rs) lf rf = Ok (libBest' ls rs (lf.v) (rf.w))
libBest' (OkVal v ls) (Ok rs) lf rf = Ok (libBest' ls rs (lf.v) rf )
libBest' (Ok ls) (OkVal w rs) lf rf = Ok (libBest' ls rs lf (rf.w))
libBest' (Ok ls) (Ok rs) lf rf = Ok (libBest' ls rs lf rf )
libBest' (OkVal v ls) _ lf rf = OkVal (lf.v) ls
libBest' _ (OkVal w rs) lf rf = OkVal (rf.w) rs
libBest' (Ok ls) _ lf rf = OkVal lf ls
libBest' _ (Ok rs) lf rf = OkVal rf rs
libBest' l@(Cost i ls ) r@(Cost j rs ) lf rf
| i ==# j = Cost i (libBest' ls rs lf rf)
| i <# j = Cost i (val lf ls)
| i ># j = Cost j (val rf rs)
libBest' l@(NoMoreSteps v) _ lf rf = NoMoreSteps (lf v)
libBest' _ r@(NoMoreSteps w) lf rf = NoMoreSteps (rf w)
libBest' l@(Cost i ls) _ lf rf = Cost i (val lf ls)
libBest' _ r@(Cost j rs) lf rf = Cost j (val rf rs)
libBest' l r lf rf = libCorrect l r lf rf
lib_correct :: Ord s => (b -> c -> Steps d s p) -> (b -> c -> Steps d s p) -> b -> c -> Steps d s p
lib_correct p q = \k inp -> libCorrect (p k inp) ( q k inp) id id
libCorrect :: Ord s => Steps a s p -> Steps c s p -> (a -> d) -> (c -> d) -> Steps d s p
libCorrect ls rs lf rf
= let (ToBeat _ choice) = traverse
(traverse (ToBeat 999# (val lf newleft))
(val lf, newleft) 0# 4#)
(val rf, newright) 0# 4#
newleft = addexpecting (starting rs) ls
newright = addexpecting (starting ls) rs
in Best (val lf newleft)
choice
(val rf newright)
data ToBeat a = ToBeat Int# a
traverse :: ToBeat (Steps a s p) -> (Steps v s p -> Steps a s p, Steps v s p) -> Int# -> Int# -> ToBeat (Steps a s p)
traverse b@(ToBeat bv br) (f, s) v 0# =
if bv <=# v
then b
else ToBeat v (f s)
traverse b@(ToBeat bv br) (f, Ok l) v n = traverse b (f.Ok , l) (v -# n +# 4#) (n -# 1#)
traverse b@(ToBeat bv br) (f, OkVal w l) v n = traverse b (f.OkVal w, l) (v -# n +# 4#) (n -# 1#)
traverse b@(ToBeat bv br) (f, Cost i l) v n = if i +# v >=# bv
then b
else traverse b (f.Cost i, l) (i +# v) n
traverse b@(ToBeat bv br) (f, Best l _ r) v n = traverse (traverse b (f, l) v n) (f, r) v n
traverse b@(ToBeat bv br) (f, StRepair i msgs r) v n = if i +# v >=# bv then b
else traverse b (f.StRepair i msgs, r) (i +# v) (n -# 1#)
traverse b@(ToBeat bv br) (f, t@(NoMoreSteps _)) v n = if bv <=# v then b else ToBeat v (f t)
data AnaParser state result s p a
= AnaParser { pars :: ParsRec state result s p a
, leng :: Nat
, zerop :: Maybe (Bool, Either a (ParsRec state result s p a))
, onep :: OneDescr state result s p a
}
data OneDescr state result s p a
= OneDescr { firsts :: Expecting s
, table :: [(SymbolR s, TableEntry state result s p a)]
}
data TableEntry state result s p a = TableEntry (ParsRec state result s p a) (Expecting s -> ParsRec state result s p a)
anaFail :: OutputState a => AnaParser b a c p d
anaFail = AnaParser { pars = libFail
, leng = Infinite
, zerop = Nothing
, onep = noOneParser
}
noOneParser = OneDescr (EOr []) []
pEmpty p zp = AnaParser { pars = p
, leng = Zero
, zerop = Just zp
, onep = noOneParser
}
anaSucceed v = pEmpty (libSucceed v) (False, Left v)
anaLow v = pEmpty (libSucceed v) (True, Left v)
anaDynE p = pEmpty p (False, Right p)
anaDynL p = pEmpty p (True , Right p)
anaOr ld@(AnaParser _ ll zl ol) rd@(AnaParser _ lr zr or)
= mkParser newlength newZeroDescr newOneDescr
where (newlength, maybeswap) = ll `nat_min` lr
newZeroDescr = case zl of {Nothing -> zr
;_ -> case zr of {Nothing -> zl
;_ -> usererror ("Two empty alternatives")
} }
newOneDescr = maybeswap orOneOneDescr ol or False
anaSeq libdollar libseq comb (AnaParser pl ll zl ol) ~rd@(AnaParser pr lr zr or)
= case zl of
Just (b, zp ) -> let newZeroDescr = seqZeroZero zl zr libdollar libseq comb
newOneDescr = let newOneOne = mapOnePars ( `libseq` pr) ol
newZeroOne = case zp of
Left f -> mapOnePars (f `libdollar` ) or
Right p -> mapOnePars (p `libseq` ) or
in orOneOneDescr newZeroOne newOneOne b
in mkParser lr newZeroDescr newOneDescr
_ -> AnaParser (pl `libseq` pr) (ll `nat_add` lr) Nothing (mapOnePars (`libseq` pr) ol)
seqZeroZero Nothing _ _ _ _ = Nothing
seqZeroZero _ Nothing _ _ _ = Nothing
seqZeroZero (Just (llow, left)) (Just (rlow, right)) libdollar libseq comb
= Just ( llow || rlow
, case left of
Left lv -> case right of
Left rv -> Left (comb lv rv)
Right rp -> Right (lv `libdollar` rp)
Right lp -> case right of
Left rv -> Right (lp `libseq` libSucceed rv)
Right rp -> Right (lp `libseq` rp)
)
orOneOneDescr ~(OneDescr fl tl) ~(OneDescr fr tr) b
= let keystr = map fst tr
lefttab = if b then [r | r@(k,_) <- tl, not (k `elem` keystr)] else tl
in OneDescr (fl `eor` fr) (lefttab ++ tr)
anaCostRange _ _ EmptyR = anaFail
anaCostRange ins_cost ins_sym range
= mkParser (Succ Zero) Nothing ( OneDescr (ESym range) [(range, TableEntry libAccept
(libInsert ins_cost ins_sym)
)])
anaGetFirsts (AnaParser p l z od) = firsts od
anaSetFirsts newexp (AnaParser _ l zd od)
= mkParser l zd (od{firsts = newexp })
mapOnePars fp ~(OneDescr fi t) = OneDescr fi [ (k, TableEntry (fp p) (fp.corr))
| (k, TableEntry p corr ) <- t
]
mkParser :: (InputState state s p, Symbol s, Ord s, OutputState result) =>
Nat -> Maybe (Bool, Either a (ParsRec state result s p a)) -> OneDescr state result s p a -> AnaParser state result s p a
mkParser length zd ~descr@(OneDescr firsts tab)
= let parstab = foldr1 mergeTables [[(k, p)]| (k, TableEntry p _) <- tab]
mkactualparser getp
= let ptab = [(k, (getp pr) )| (k, pr) <- parstab]
find = case ptab of
[(s1, p1)] -> (\ s -> if r1 s then Just p1 else Nothing )
where r1 = symInRange s1
[(s1, p1), (s2, p2)] -> ( \ s -> if r1 s then Just p1 else
if r2 s then Just p2 else Nothing)
where r1 = symInRange s1
r2 = symInRange s2
[(s1, p1), (s2, p2), (s3, p3)] -> (\ s -> if r1 s then Just p1 else
if r2 s then Just p2 else
if r3 s then Just p3 else Nothing)
where r1 = symInRange s1
r2 = symInRange s2
r3 = symInRange s3
_ -> lookupSym (tab2tree ptab)
zerop = getp (case zd of
Nothing -> libFail
Just (_, Left v) -> libSucceed v
Just (_, Right p) -> p
)
insertsyms = head [ getp (pr firsts)| (_ , TableEntry _ pr) <- tab ]
correct k inp
= case splitState inp of
(# s, ss #) -> let { msg = Msg firsts (getPosition inp) (Delete s)
; newinp = deleteSymbol s (reportError msg ss)
}
in libCorrect (StRepair (deleteCost s) msg (result k newinp))
(insertsyms k inp) id id
result = if null tab then zerop
else case zd of
Nothing ->(\k inp ->
case splitStateE inp of
Left' s ss -> case find s of
Just p -> p k inp
Nothing -> correct k inp
Right' ss -> insertsyms k ss)
Just (True, _) ->(\k inp ->
case splitStateE inp of
Left' s ss -> case find s of
Just p -> p k inp
Nothing -> let r = zerop k inp
in if hasSuccess r then r else libCorrect r (correct k inp) id id
Right' ss -> zerop k ss)
Just (False, _) ->(\k inp ->
case splitStateE inp of
Left' s ss -> case find s of
Just p -> p k inp `libBest` zerop k inp
Nothing -> let r = zerop k inp
in if hasSuccess r then r else libCorrect r (correct k inp) id id
Right' ss -> zerop k ss)
in result
res = mkPR (P ( \ acc -> mkactualparser (\ (PR (P p, _ , _)) -> p acc))
,R ( mkactualparser (\ (PR (_ , R p, _)) -> p ))
)
in AnaParser res length zd descr
data Nat = Zero
| Succ Nat
| Infinite
deriving (Eq, Show)
nat_le Zero _ = True
nat_le _ Zero = False
nat_le Infinite _ = False
nat_le _ Infinite = True
nat_le (Succ l) (Succ r) = nat_le l r
nat_min Infinite r = (r, flip)
nat_min l Infinite = (l, id)
nat_min Zero _ = (Zero, id)
nat_min _ Zero = (Zero, flip)
nat_min (Succ ll) (Succ rr) = let (v, fl) = ll `nat_min` rr in (Succ v, fl)
nat_add Infinite _ = Infinite
nat_add Zero r = r
nat_add (Succ l) r = Succ (nat_add l r)
mergeTables l [] = l
mergeTables [] r = r
mergeTables lss@(l@(le@(Range a b),ct ):ls) rss@(r@(re@(Range c d),ct'):rs)
= let ct'' = ct `libOr` ct'
in if c<a then mergeTables rss lss
else if b<c then l:mergeTables ls rss
else if a<c then (Range a (symBefore c),ct) :mergeTables ((Range c b,ct):ls) rss
else if b<d then (Range a b,ct'') :mergeTables ((Range (symAfter b) d,ct'):rs) ls
else if b>d then mergeTables rss lss
else (le,ct'') : mergeTables ls rs
libMap :: OutputState result =>
(forall r r'' . (b -> r -> r'') -> state -> Steps (a, r) s p -> ( state, Steps r'' s p))
-> (forall r . state -> Steps ( r) s p -> ( state, Steps r s p))
-> ParsRec state result s p a -> ParsRec state result s p b
libMap f f' (PR (P p, R r, _)) = mkPR ( P(\acc -> let pp = p (,)
facc = f acc
in \ k instate -> let inresult = pp k outstate
(outstate, outresult) = facc instate inresult
in outresult
)
, R(\ k instate -> let inresult = r k outstate
(outstate, outresult) = f' instate inresult
in outresult)
)
pMap :: OutputState result =>
(forall r r'' . (b -> r -> r'') -> state -> Steps (a, r) s p -> ( state, Steps r'' s p))
-> (forall r . state -> Steps ( r) s p -> ( state, Steps r s p))
-> AnaParser state result s p a -> AnaParser state result s p b
pMap f f' (AnaParser p l z o) = AnaParser (libMap f f' p)
l
(case z of
Nothing -> Nothing
Just (b, v) -> Just (b, case v of
Left w -> Right (libMap f f' (libSucceed w))
Right pp -> Right (libMap f f' pp)))
(mapOnePars (libMap f f') o)
libWrap :: OutputState result =>
(forall r r'' . (b -> r -> r'')
-> state
-> Steps (a, r) s p
-> (state -> Steps r s p)
-> (state, Steps r'' s p, state -> Steps r s p))
-> (forall r . state
-> Steps r s p
-> (state -> Steps r s p)
-> (state, Steps r s p, state -> Steps r s p))
-> ParsRec state result s p a -> ParsRec state result s p b
libWrap f f' (PR (P p, R r, _)) = mkPR ( P(\ acc -> let pp = p (,)
facc = f acc
in \ k instate -> let (stl, ar, str2rr) = facc instate rl k
rl = pp str2rr stl
in ar
)
, R(\ k instate -> let (stl, ar, str2rr) = f' instate rl k
rl = r str2rr stl
in ar)
)
pWrap :: OutputState result
=> (forall r r'' . (b -> r -> r'')
-> state
-> Steps (a, r) s p
-> (state -> Steps r s p)
-> (state, Steps r'' s p, state -> Steps r s p))
-> (forall r . state
-> Steps r s p
-> (state -> Steps r s p)
-> (state, Steps r s p, state -> Steps r s p))
-> AnaParser state result s p a -> AnaParser state result s p b
pWrap f f' (AnaParser p l z o) = AnaParser (libWrap f f' p)
l
(case z of
Nothing -> Nothing
Just (b, v) -> Just (b, case v of
Left w -> Right (libWrap f f' (libSucceed w))
Right pp -> Right (libWrap f f' pp)))
(mapOnePars (libWrap f f') o)
lookupSym :: Ord a => BinSearchTree (SymbolR a, b) -> a -> Maybe b
lookupSym = btFind symRS