{-# LANGUAGE TypeOperators, TypeFamilies, UndecidableInstances , FlexibleInstances, MultiParamTypeClasses, CPP #-} {-# OPTIONS_GHC -Wall -fno-warn-orphans #-} ---------------------------------------------------------------------- -- | -- Module : Data.Basis -- Copyright : (c) Conal Elliott 2008 -- License : BSD3 -- -- Maintainer : conal@conal.net -- Stability : experimental -- -- Basis of a vector space, as an associated type -- This module requires ghc-6.10 or later ---------------------------------------------------------------------- module Data.Basis (HasBasis(..), linearCombo, recompose) where -- import Control.Applicative ((<$>)) import Control.Arrow (first) import Data.Ratio import Foreign.C.Types (CFloat, CDouble) -- import Data.Either import Data.VectorSpace -- using associated data type instead of associated type synonym to work -- around ghc bug <http://hackage.haskell.org/trac/ghc/ticket/3038> class VectorSpace v => HasBasis v where -- | Representation of the canonical basis for @v@ type Basis v :: * -- | Interpret basis rep as a vector basisValue :: Basis v -> v -- | Extract coordinates decompose :: v -> [(Basis v, Scalar v)] -- | Experimental version. More elegant definitions, and friendly to -- infinite-dimensional vector spaces. decompose' :: v -> (Basis v -> Scalar v) -- Defining property: recompose . decompose == id -- Turn a basis decomposition back into a vector. recompose :: HasBasis v => [(Basis v, Scalar v)] -> v recompose = linearCombo . fmap (first basisValue) -- recompose ps = linearCombo (first basisValue <$> ps) -- I don't know how to define -- -- recompose' :: HasBasis v => (Basis v -> Scalar v) -> v -- -- However, I don't seem to use recompose anywhere. -- I don't even use basisValue or decompose. #define ScalarTypeCon(con,t) \ instance con => HasBasis (t) where \ { type Basis (t) = () \ ; basisValue () = 1 \ ; decompose s = [((),s)] \ ; decompose' s = const s } #define ScalarType(t) ScalarTypeCon((),t) ScalarType(Float) ScalarType(CFloat) ScalarType(Double) ScalarType(CDouble) ScalarTypeCon(Integral a, Ratio a) instance ( HasBasis u, s ~ Scalar u , HasBasis v, s ~ Scalar v ) => HasBasis (u,v) where type Basis (u,v) = Basis u `Either` Basis v basisValue (Left a) = (basisValue a, zeroV) basisValue (Right b) = (zeroV, basisValue b) decompose (u,v) = decomp2 Left u ++ decomp2 Right v decompose' (u,v) = decompose' u `either` decompose' v decomp2 :: HasBasis w => (Basis w -> b) -> w -> [(b, Scalar w)] decomp2 inject = fmap (first inject) . decompose instance ( HasBasis u, s ~ Scalar u , HasBasis v, s ~ Scalar v , HasBasis w, s ~ Scalar w ) => HasBasis (u,v,w) where type Basis (u,v,w) = Basis (u,(v,w)) basisValue = unnest3 . basisValue decompose = decompose . nest3 decompose' = decompose' . nest3 unnest3 :: (a,(b,c)) -> (a,b,c) unnest3 (a,(b,c)) = (a,b,c) nest3 :: (a,b,c) -> (a,(b,c)) nest3 (a,b,c) = (a,(b,c)) -- instance (Eq a, HasBasis u) => HasBasis (a -> u) where -- type Basis (a -> u) = (a, Basis u) -- basisValue (a,b) = f -- where f a' | a == a' = bv -- | otherwise = zeroV -- bv = basisValue b -- decompose = error "decompose: not defined on functions" -- decompose' g (a,b) = decompose' (g a) b -- Simpler but less efficient: -- -- basisValue (a,b) a' | a == a' = basisValue b -- | otherwise = zeroV -- Just for pointless perversion points: -- -- decompose' g = uncurry (\ a b -> decompose' (g a) b) -- decompose' g = uncurry (\ a -> decompose' (g a)) -- decompose' g = uncurry (decompose' . g) -- decompose' = uncurry . fmap decompose' -- decompose' = (fmap uncurry) (fmap decompose') {- ---- Testing t1 = basisValue () :: Float t2 = basisValue () :: Double t3 = basisValue (Right ()) :: (Float,Double) t4 = basisValue (Right (Left ())) :: (Float,Double,Float) -}